TypeScript
Design Patterns

Boost your development efficiency by learning about
design patterns in TypeScript

PACKT

http://www.allitebooks.org

TypeScript Design Patterns

Boost your development efficiency by learning about
design patterns in TypeScript

Vilic Vane

open sodrce
PUBLISHING - o

BIRMINGHAM - MUMBAI

lvww.allitebooks.cond

http://www.allitebooks.org

TypeScript Design Patterns

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1240816

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78528-083-2

www.packtpub.com

lvww.allitebooks.cond

http://www.packtpub.com
http://www.allitebooks.org

Author

Vilic Vane

Reviewer

Wander Wang

Commissioning Editor

Kunal Parikh

Acquisition Editor

Denim Pinto

Content Development Editor

Nikhil Borkar

Technical Editor

Hussain Kanchwala

Credits

Copy Editor

Safis Editing

Project Coordinator

Suzanne Coutinho

Proofreader

Safis Editing
Indexer
Rekha Nair
Graphics

Jason Monteiro

Production Coordinator

Aparna Bhagat

lvww.allitebooks.cond

http://www.allitebooks.org

About the Author

Vilic Vane is a JavaScript engineer with over 8 years of experience in web development. He
started following the TypeScript project since it went public, and he’s also a contributor of
the project. He is now working at Ruff, a startup company building an IoT platform that
runs JavaScript on embedded devices.

I want to thank the editors and reviewers, including Wander Wang, for their efforts that made this
book possible. I also want to thank my girlfriend, Emi, for not pissing me off when she came for me
from her school 1,400 km away but could only have a takeout with me in my apartment due to my
always-about-to-start-writing condition.

lvww.allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Wander Wang is working at Egret Technology Co., Ltd. as the chief architect of Egret
Engine. He also works as a part-time teacher in the School of Software Engineering at
Beijing University of Technology. Wang has 7 years of experience in developing web and
mobile games, and he currently focuses on the language research and extension of
TypeScript. Egret Engine is a popular HTML5 game engine written in TypeScript. There are
more than 80,000 developers worldwide who build their web or mobile games on the top of
Egret Engine. Wang is also interested in technologies such as React, React-Native, and
Electron, and so on.

lvww.allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

IE\ PACKTL 1

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

lvww.allitebooks.cond

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents

Chapter 1: Tools and Frameworks

7
Installing the prerequisites 7
Installing Node.js 7

8

9

Installing TypeScript compiler
Choosing a handy editor

Visual Studio Code 9
Configuring Visual Studio Code 10
Opening a folder as a workspace 11
Configuring a minimum build task 12

Sublime Text with TypeScript plugin 13
Installing Package Control 14
Installing the TypeScript plugin 14

Other editor or IDE options 14
Atom with the TypeScript plugin 15
Visual Studio 15
WebStorm 16

Getting your hands on the workflow 16

Configuring a TypeScript project 16
Introduction to tsconfig.json 17
Compiler options 18

target 18
module 18
declaration 18
sourceMap 19
jsx 19
noEmitOnError 19
noEmitHelpers 19
nolmplicitAny 19
experimentalDecorators* 19
emitDecoratorMetadata* 20
outDir 20
outFile 20
rootDir 20
preserveConstEnums 21
strictNullChecks 21
stripInternal® 21
isolatedModules 21
Adding source map support 21

Downloading declarations using typings 22

Installing typings 22

lvww.allitebooks.cond

http://www.allitebooks.org

Downloading declaration files 23

Option “save” 24
Testing with Mocha and Istanbul 24
Mocha and Chai 24

Writing tests in JavaScript 25

Writing tests in TypeScript 25

Getting coverage information with Istanbul 27
Testing in real browsers with Karma 28
Creating a browser project 28
Installing Karma 30
Configuring and starting Karma 30
Integrating commands with npm 31
Why not other fancy build tools? 31
Summary 32
Chapter 2: The Challenge of Increasing Complexity 33
Implementing the basics 34
Creating the code base 34
Defining the initial structure of the data to be synchronized 35
Getting data by comparing timestamps 35
Two-way synchronizing 36
Things that went wrong while implementing the basics 37
Passing a data store from the server to the client does not make sense 37

Making the relationships clear 38
Growing features 39
Synchronizing multiple items 39
Simply replacing data type with an array 39
Server-centered synchronization 39
Synchronizing from the server to the client 40
Synchronizing from client to server 44
Synchronizing multiple types of data 49
Supporting multiple clients with incremental data 50
Updating the client side 51
Updating server side 55
Supporting more conflict merging 57
New data structures 57
Updating client side 58
Updating the server side 60

Things that go wrong while implementing everything 60
Piling up similar yet parallel processes 61

Data stores that are tremendously simplified 61
Getting things right 62
Finding abstraction 62
Implementing strategies 63

[ii]

lvww.allitebooks.cond

http://www.allitebooks.org

Wrapping stores 64
Summary 65
Chapter 3: Creational Design Patterns 66
Factory method 68
Participants 69
Pattern scope 69
Implementation 69
Consequences 72
Abstract Factory 73
Participants 74
Pattern scope 75
Implementation 75
Consequences 79
Builder 79
Participants 80
Pattern scope 81
Implementation 81
Consequences 86
Prototype 86
Singleton 87
Basic implementations 87
Conditional singletons 89
Summary 89
Chapter 4: Structural Design Patterns 90
Composite Pattern 90
Participants 92
Pattern scope 92
Implementation 92
Consequences 94
Decorator Pattern 95
Participants 96
Pattern scope 97
Implementation 97
Classical decorators 97
Decorators with ES-next syntax 100
Consequences 101
Adapter Pattern 101
Participants 103
Pattern scope 103

[iii]

lvww.allitebooks.cond

http://www.allitebooks.org

Implementation 103
Consequences 106
Bridge Pattern 106
Participants 106
Pattern scope 107
Implementation 107
Consequences 109
Facade Pattern 110
Participants 111
Pattern scope 112
Implementation 112
Consequences 114
Flyweight Pattern 114
Participants 115
Pattern scope 116
Implementation 116
Consequences 118
Proxy Pattern 118
Participants 119
Pattern scope 120
Implementation 120
Consequences 123
Summary 123
Chapter 5: Behavioral Design Patterns 124
Chain of Responsibility Pattern 124
Participants 127
Pattern scope 128
Implementation 128
Consequences 130
Command Pattern 130
Participants 132
Pattern scope 132
Implementation 133
Consequences 134
Memento Pattern 135
Participants 136
Pattern scope 136
Implementation 136
Consequences 138

[iv]

Iterator Pattern 138
Participants 139
Pattern scope 139
Implementation 139

Simple array iterator 140
ES6 iterator 141
Consequences 143

Mediator Pattern 143
Participants 144
Pattern scope 145
Implementation 145
Consequences 147

Summary 148

Chapter 6: Behavioral Design Patterns: Continuous 149

Strategy Pattern 150
Participants 151
Pattern scope 152
Implementation 152
Consequences 154

State Pattern 154
Participants 155
Pattern scope 156
Implementation 156
Consequences 158

Template Method Pattern 158
Participants 159
Pattern scope 160
Implementation 160
Consequences 162

Observer Pattern 162
Participants 166
Pattern scope 167
Implementation 167
Consequences 169

Visitor Pattern 170
Participants 172
Pattern scope 173
Implementation 173
Consequences 176

[v]

Summary 176
Chapter 7: Patterns and Architectures in JavaScript and TypeScript 178
Promise-based web architecture 178
Promisifying existing modules or libraries 180
Views and controllers in Express 181
Abstraction of responses 184
Abstraction of permissions 186
Expected errors 187
Defining and throwing expected errors 188
Transforming errors 188
Modularizing project 189
Asynchronous patterns 191
Writing predictable code 191
Asynchronous creational patterns 193
Asynchronous middleware and hooks 194
Event-based stream parser 195
Summary 197
Chapter 8: SOLID Principles 198
Single responsibility principle 199
Example 199
Choosing an axis 200
Open-closed principle 201
Example 201
Abstraction in JavaScript and TypeScript 202
Refactor earlier 203
Liskov substitution principle 203
Example 204
The constraints of substitution 205
Interface segregation principle 205
Example 205
Proper granularity 207
Dependency inversion principle 207
Example 207
Separating layers 207
Summary 208
Chapter 9: The Road to Enterprise Application 209
Creating an application 210
Decision between SPA and “normal” web applications 210

[vi]

Taking team collaboration into consideration 211

Building and testing projects 211
Static assets packaging with webpack 212
Introduction to webpack 212
Bundling JavaScript 212

Loading TypeScript 214

Splitting code 216

Loading other static assets 217

Adding TSLint to projects 217
Integrating webpack and tslint command with npm scripts 218
Version control 218
Git flow 219
Main branches 220
Supporting branches 220

Feature branches 220

Release branches 221

Hotfix branches 222

Summary of Git flow 222

Pull request based code review 223
Configuring branch permissions 223
Comments and modifications before merge 223
Testing before commits 224

Git hooks 224

Adding pre-commit hook automatically 224
Continuous integration 225
Connecting GitHub repository with Travis-ClI 225
Deployment automation 226
Passive deployment based on Git server side hooks 227
Proactive deployment based on timers or notifications 228
Summary 228
Index 230

[vii]

Preface

It wasn’t a long time ago that many JavaScript engineers or, most of the time, web frontend
engineers, were still focusing on solving detailed technical issues, such as how to lay out
specific content cross-browsers and how to send requests cross-domains.

At that time, a good web frontend engineer was usually expected to have notable
experience on how detailed features can be implemented with existing APIs. Only a few
people cared about how to write application-scale JavaScript because the interaction on a
web page was really simple and no one wrote ASP in JavaScript.

However, the situation has changed tremendously. JavaScript has become the only
language that runs everywhere, cross-platform and cross-device. In the main battlefield,
interactions on the Web become more and more complex, and people are moving business
logic from the backend to the frontend. With the growth of the Node.js community,
JavaScript is playing a more and more important roles in our life.

I am currently working for an IoT company called Ruff that builds a platform for JavaScript
to write applications run on embedded devices. You might have seen a fake book cover in
the title of Writing Device Drivers in JavaScript, but that is actually a part of what we do.

The boom of JavaScript, however, makes people realize that the language itself might not be
powerful enough for applications on a larger scale. While we enjoy the flexibility of the
language, we suffer from its lack of static-type information; for instance, consider the
following;:

* No static type checking: We have to rely on debugging or tests to get rid of
simple errors that could be eliminated when the code is written.

¢ Refactoring is a pain: Basically, what the IDEs or editors can do about JavaScript
code is renaming local variables or exported module functions at best.

¢ Understanding code is difficult: When you grasp a piece of code, you might
have to look around and manually search for references just to figure out which
properties an object has and what types of property they are. This happens to our
own code as well.

Compared to tools such as ESLint and even Flow, which only partially solve the problems,
TypeScript does a really good job while it is still sticking to the ECMAScript standard.

TypeScript is indeed an awesome tool for JavaScript. Unfortunately, intelligence is still
required to write actually robust, maintainable, and reusable code. But wait, doesn’t the

Preface

intelligence part involve the true value of our work?

We might all have had trouble finding clues to mysterious bugs, or squeezed our head
thinking about how we can add new features to the existing code base. Some of us, with
experience and intuition built over the years, may directly come up with a design that’s not
bad. For these people, getting through the common design patterns can help gain
knowledge of what people have already catalogued over years in the industry or be better
understood when discussing software designs with others. For people who have less
experience, learning common design patterns may be a more straightforward approach to
creating code that’s beautifully designed.

What this book covers

Chapter 1, Tools and Frameworks, provides a brief introduction to tools and frameworks that
will be used through this book, including installing a TypeScript compiler, preparing an
editor, and a basic workflow.

Chapter 2, The Challenge of Increasing Complexity, starts with a simple server-client
synchronizing implementation; we then expand its features and see how things can gain
undesired complexity and how that complexity can be reduced.

Chapter 3, Creational Design Patterns, catalogs five common creational design patterns, the
Factory Method, Abstract Factory, Builder, Prototype, and Singleton patterns.

Chapter 4, Structural Design Patterns, catalogs seven common structural design patterns, the
Composite, Decorator, Adapter, Bridge, Facade, Flyweight, and Proxy patterns.

Chapter 5, Behavioral Design Patterns, catalogs five common behavioral design patterns, the
Chain of Responsibility, Command, Memento, Iterator, and Mediator patterns.

Chapter 6, Behavioral Design Patterns: Continuous, catalogs another four common behavioral
design patterns, the Strategy, State, Template Method, Observer, and Visitor patterns.

Chapter 7, Patterns and Architectures in JavaScript and TypeScript, takes a look at the patterns
and architectures that closely relate to the language (JavaScript or TypeScript) and its
application, including asynchronous programming, module organization, error handling,
permission abstraction, and so on.

Chapter 8, SOLID Principles, explains the well-known SOLID principles and how they can
benefit a project and keep it healthy over time.

Chapter 9, The Road to Enterprise Application, guides readers to build the complete workflow
of an application that is ready to scale, including testing and continuous integration.

[2]

Preface

What you need for this book

It is possible to read through this entire book without installing anything. But it is
recommended that you have a handy editor and TypeScript compiler installed to get your
hands dirty. Please refer to chapter 1, Tools and Frameworks, for the detailed preparation of
tools, including Node.js, a TypeScript compiler, declaration manager, and a nice editor or
IDE.

Though this book does not require the reader to have a knowledge of design patterns, it's
not a book that teaches basic TypeScript syntax. If you are not yet familiar with TypeScript,
please walk through the TypeScript Handbook before reading chapter 2, The Challenge of
Increasing Complexity.

Who this book is for

If you are a TypeScript developer, this book is for you. No knowledge of design patterns is
required to read this book.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Save the
following code to file test . ts."

A block of code is set as follows:
require ('chai') .should();

Any command-line input or output is written as follows:
$ tsc test.ts

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Without the necessary
declaration files, the compiler would complain Cannot find module express."

[3]

Preface

0 Warnings or important notes appear in a box like this.
8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-

mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http: //www.p
acktpub.com. If you purchased this book elsewhere, you can visit http: //www.packtpub.c
om/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk N

[4]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/PacktPubl
ishing/TypeScript-Design-Patterns/. We also have other code bundles from our rich
catalog of books and videos available at https://github.com/PacktPublishing/. Check
them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/support and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

[5]

https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[6]

Tools and Frameworks

We could always use the help of real code to explain the design patterns we'll be discussing.
In this chapter, we'll have a brief introduction to the tools and frameworks that you might
need if you want to have some practice with complete working implementations of the
contents of this book.

In this chapter, we'll cover the following topics:

e Installing Node.js and TypeScript compiler

e Popular editors or IDEs for TypeScript

¢ Configuring a TypeScript project

¢ A basic workflow that you might need to play with your own implementations of
the design patterns in this book

Installing the prerequisites

The contents of this chapter are expected to work on all major and up-to-date desktop
operating systems, including Windows, OS X, and Linux.

As Node.js is widely used as a runtime for server applications as well as frontend build
tools, we are going to make it the main playground of code in this book.

TypeScript compiler, on the other hand, is the tool that compiles TypeScript source files into
plain JavaScript. It's available on multiple platforms and runtimes, and in this book we'll be
using the Node.js version.

Tools and Frameworks

Installing Node.js

Installing Node.js should be easy enough. But there's something we could do to minimize
incompatibility over time and across different environments:

¢ Version: We'll be using Node.js 6 with npm 3 built-in in this book. (The major
version of Node.js may increase rapidly over time, but we can expect minimum
breaking changes directly related to our contents. Feel free to try a newer version
if it's available.)

e Path: If you are installing Node.js without a package manager, make sure the
environment variable PATH is properly configured.

Open a console (a command prompt or terminal, depending on your operating system) and
make sure Node.js as well as the built-in package manager npm is working;:

$ node -v
6.x.x

$ npm -v
3.x.x

Installing TypeScript compiler

TypeScript compiler for Node.js is published as an npm package with command line
interface. To install the compiler, we can simply use the npm install command:

$ npm install typescript -g

Option —g means a global installation, so that t sc will be available as a command. Now
let's make sure the compiler works:

$ tsc -v
Version 2.x.x

with switch —h. Taking a look into these options may help you discover

You may get a rough list of the options your TypeScript compiler provides
0 some useful features.

[8]

Tools and Frameworks

Before choosing an editor, let's print out the legendary phrase:
1. Save the following code to file test . ts:
function hello(name: string): void {
console.log(hello, ${name}!’);
}

hello('world');

2. Change the working directory of your console to the folder containing the created
file, and compile it with tsc:

$ tsc test.ts

3. With luck, you should have the compiled JavaScript file as test . js. Execute it
with Node.js to get the ceremony done:

$ node test.js
hello, world!

Here we go, on the road to retire your CTO.

Choosing a handy editor

A compiler without a good editor won't be enough (if you are not a believer of Notepad).
Thanks to the efforts made by the TypeScript community, there are plenty of great editors
and IDEs ready for TypeScript development.

However, the choice of an editor could be much about personal preferences. In this section,
we'll talk about the installation and configuration of Visual Studio Code and Sublime Text.
But other popular editors or IDEs for TypeScript will also be listed with brief introductions.

Visual Studio Code

Visual Studio Code is a free lightweight editor written in TypeScript. And it's an open
source and cross-platform editor that already has TypeScript support built-in.

You can download Visual Studio Code from https://code.visualstudio.com/ and the
installation will probably take no more than 1 minute.

[91

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

The following screenshot shows the debugging interface of Visual Studio Code with a
TypeScript source file:

v index.ts - typescript - Visual Studio Code - O X
File Edit View Goto Help

index.ts DEB Launch

foo(...args: string[]): 4 VARIABLES
line = args.join(' ');
console.log(li { 4 Local
}
foo("node", "index : "index.js" args: Array[2]
ents: #<Object>
line: e index.js"

p this: #<Obiect>
b WATCH

4 CALL STACK
Paused on breakpoint.
foo index.ts 3
(anonymous function)
Module._compile modulejs 398
Module._extensions..js

Module.load modulejs 344

Madidla laad wamdiilaisc 204

b BREAKPOINTS

Ln7,Col1 UTF-8 CRLF TypeScript @

Configuring Visual Studio Code

As Code already has TypeScript support built-in, extra configurations are actually not
required. But if the version of TypeScript compiler you use to compile the source code
differs from what Code has built-in, it could result in unconformity between editing and
compiling.

[10]

Tools and Frameworks

To stay away from the undesired issues this would bring, we need to configure TypeScript
SDK used by Visual Studio Code manually:

1. Press F1, type Open User Settings, and enter. Visual Studio Code will open
the settings JSON file by the side of a read-only JSON file containing all the
default settings.

2. Add the field typescript.tsdk with the path of the 1ib folder under the
TypeScript package we previously installed:

1. Execute the command npm root -g in your console to get the root of
global Node.js modules.

2. Append the root path with /typescript/1lib as the SDK path.

and use the local TypeScript 1ib path for Visual Studio Code. (You will
need to use the locally installed version for compiling as well.)

0 You can also have a TypeScript package installed locally with the project,

Opening a folder as a workspace

Visual Studio Code is a file- and folder-based editor, which means you can open a file or a
folder and start work.

But you still need to properly configure the project to take the best advantage of Code. For
TypeScript, the project file is t sconfig. json, which contains the description of source files
and compiler options. Know little about t sconfig. json? Don't worry, we'll come to that
later.

Here are some features of Visual Studio Code you might be interested in:

e Tasks: Basic task integration. You can build your project without leaving the
editor.

¢ Debugging: Node.js debugging with source map support, which means you can
debug Node.js applications written in TypeScript.

e Git: Basic Git integration. This makes comparing and committing changes easier.

[11]

Tools and Frameworks

Configuring a minimum build task

The default key binding for a build task is Ctrl + Shift + B or cmd + Shift + B on OS X. By
pressing these keys, you will get a prompt notifying you that no task runner has been
configured. Click Configure Task Runner and then select a TypeScript build task template
(either with or without the watch mode enabled). A tasks. json file under the .vscode
folder will be created automatically with content similar to the following;:

{
"version": "0.1.0",
"command": "tsc",
"isShellCommand": true,
"args": ["-w", "-p", "."],
"showOutput": "silent",
"isWatching": true,
"problemMatcher": "S$tsc-watch"

}

Now create a test . ts file with some hello-world code and run the build task again. You
can either press the shortcut we mentioned before or press Ctrl/Cmd + P, type task tsc,
and enter.

If you were doing things correctly, you should be seeing the output test . js by the side of
test.ts.

There are some useful configurations for tasking that can't be covered. You may find more
information on the website of Visual Studio Code: https://code.visualstudio.com/.

From my perspective, Visual Studio Code delivers the best TypeScript development
experience in the class of code editors. But if you are not a fan of it, TypeScript is also
available with official support for Sublime Text.

[12]

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

Sublime Text with TypeScript plugin

Sublime Text is another popular lightweight editor around the field with amazing
performance.

The following image shows how TypeScript IntelliSense works in Sublime Text:

C:\Users\vilicvane\Desktop\typescript\src\index,ts * (typescript) - Sublime Text — O X
File Edit Selection Find View Goto Tools Project Preferences Help
FOLDERS §
index.ts
¥ 5 typescript
function foo(...args: string[]): void {
P D vscode Let line = args.join(' ');
» Dout console.log(line);
v B sic }
'Foo(\);
» D typings foo(...args: string[]): void
[B tsconfigjson args:
Line 6, Column 5 Tab Size: 4 TypeScript

The TypeScript team has officially built a plugin for Sublime Text (version 3 preferred), and
you can find a detailed introduction, including useful shortcuts, in their GitHub repository
here: https://github.com/Microsoft/TypeScript-Sublime-Plugin.

There are still some issues with the TypeScript plugin for Sublime Text. It
would be nice to know about them before you start writing TypeScript
with Sublime Text.

[13]

https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin

Tools and Frameworks

Installing Package Control

Package Control is de facto package manager for Sublime Text, with which we'll install the
TypeScript plugin.

If you don't have Package Control installed, perform the following steps:

1. Click Preferences > Browse Packages..., it opens the Sublime Text packages
folder.

2. Browse up to the parent folder and then into the Install Packages folder, and

download the file below into this folder: https://packagecontrol.io/Package$%
2Control.sublime-package

3. Restart Sublime Text and you should now have a working package manager.

Now we are only one step away from IntelliSense and refactoring with Sublime Text.

Installing the TypeScript plugin

With the help of Package Control, it's easy to install a plugin:

1. Open the Sublime Text editor; press Ctrl + Shift + P for Windows and Linux or
Cmd + Shift + P for OS X.

2. Type Install Package in the command palette, select Package Control: Install
Package and wait for it to load the plugin repositories.

3. Type TypeScript and select to install the official plugin.

Now we have TypeScript ready for Sublime Text, cheers!

Like Visual Studio Code, unmatched TypeScript versions between the plugin and compiler
could lead to problems. To fix this, you can add the field "typescript_tsdk" with a path
to the TypeScript 1ib in the Settings — User file.

Other editor or IDE options

Visual Studio Code and Sublime Text are recommended due to their ease of use and
popularity respectively. But there are many great tools from the editor class to full-featured
IDE.

[14]

https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package

Tools and Frameworks

Though we're not going through the setup and configuration of those tools, you might want
to try them out yourself, especially if you are already working with some of them.

However, the configuration for different editors and IDEs (especially IDEs) could differ. It is
recommended to use Visual Studio Code or Sublime Text for going through the workflow
and examples in this book.

Atom with the TypeScript plugin

Atom is a cross-platform editor created by GitHub. It has a notable community with plenty
of useful plugins, including atom-typescript. atom-typescript is the result of the
hard work of Basarat Ali Syed, and it's used by my team before Visual Studio Code. It has
many handy features that Visual Studio Code does not have yet, such as module path
suggestion, compile on save, and so on.

Like Visual Studio Code, Atom is also an editor based on web technologies. Actually, the
shell used by Visual Studio Code is exactly what's used by Atom: Electron, another popular
project by GitHub, for building cross-platform desktop applications.

Atom is proud of being hackable, which means you can customize your own Atom editor
pretty much as you want.

Then you may be wondering why we turned to Visual Studio Code. The main reason is that
Visual Studio Code is being backed by the same company that develops TypeScript, and
another reason might be the performance issue with Atom.

But anyway, Atom could be a great choice for a start.

Visual Studio

Visual Studio is one of the best IDEs in the market. And yet it has, of course, official
TypeScript support.

Since Visual Studio 2013, a community version is provided for free to individual
developers, small companies, and open source projects.

If you are looking for a powerful IDE of TypeScript on Windows, Visual Studio could be a
wonderful choice. Though Visual Studio has built-in TypeScript support, do make sure it's
up-to-date. And, usually, you might want to install the newest TypeScript tools for Visual
Studio.

[15]

Tools and Frameworks

WebStorm

WebStorm is one of the most popular IDEs for JavaScript developers, and it has had an
early adoption to TypeScript as well.

A downside of using WebStorm for TypeScript is that it is always one step slower catching
up to the latest version compared to other major editors. Unlike editors that directly use the
language service provided by the TypeScript project, WebStorm seems to have its own
infrastructure for IntelliSense and refactoring. But, in return, it makes TypeScript support in
WebStorm more customizable and consistent with other features it provides.

If you decide to use WebStorm as your TypeScript IDE, please make sure the version of
supported TypeScript matches what you expect (usually the latest version).

Getting your hands on the workflow

After setting up your editor, we are ready to move to a workflow that you might use to
practice throughout this book. It can also be used as the workflow for small TypeScript
projects in your daily work.

In this workflow, we'll walk through these topics:

e Whatisa tsconfig. json file, and how can you configure a TypeScript project
with it?
e TypeScript declaration files and the typings command-line tool

e How to write tests running under Mocha, and how to get coverage information
using Istanbul

e How to test in browsers using Karma

Configuring a TypeScript project

The configurations of a TypeScript project can differ for a variety of reasons. But the goals
remain clear: we need the editor as well as the compiler to recognize a project and its source
files correctly. And tsconfig. json will do the job.

[16]

lvww.allitebooks.cond

http://www.allitebooks.org

Tools and Frameworks

Introduction to tsconfig.json

A TypeScript project does not have to contain a t sconfig. json file. However, most
editors rely on this file to recognize a TypeScript project with specified configurations and
to provide related features.

A tsconfig. json file accepts three fields: compilerOptions, files, and exclude. For
example, a simple tsconfig. json file could be like the following;:

{

"compilerOptions": {
"target": "es5",
"module": "commonijs",
"rootDir": "src",
"outDir": "out"

s

"exclude": [

"out",

"node_modules"
t

Or, if you prefer to manage the source files manually, it could be like this:

{

"compilerOptions": {
"target": "es5",
"module": "commonjs",
"rootDir": "src",
"outDir": "out"

}I

"files": [

"src/foo.ts",
"src/bar.ts"

}

Previously, when we used tsc, we needed to specify the source files explicitly. Now, with
tsconfig.json, we can directly run t sc without arguments (or with —w/--watch if you
want incremental compilation) in a folder that contains tsconfig. json.

[17]

Tools and Frameworks

Compiler options

As TypeScript is still evolving, its compiler options keep changing, with new features and
updates. An invalid option may break the compilation or editor features for TypeScript.
When reading these options, keep in mind that some of them might have been changed.

The following options are useful ones out of the list.

target

target specifies the expected version of JavaScript outputs. It could be es5 (ECMAScript
5), es6 (ECMAScript 6/2015), and so on.

Features (especially ECMAScript polyfills) that are available in different compilation targets
vary. For example, before TypeScript 2.1, features such as async/await were available only
when targeting ES6.

The good news is that Node.js 6 with the latest V8 engine has supported most ES6 features.
And the latest browsers have also great ES6 support. So if you are developing a Node.js
application or a browser application that's not required for backward compatibilities, you
can have your configuration target ES6.

module

Before ES6, JavaScript had no standard module system. Varieties of module loaders are
developed for different scenarios, such as commonjs, amd, umd, system, and so on.

If you are developing a Node.js application or an npm package, commonjs could be the
value of this option. Actually, with the help of modern packaging tools such as webpack
and browserify, commonjs could also be a nice choice for browser projects as well.

declaration

Enable this option to generate .d.ts declaration files along with JavaScript outputs.
Declaration files could be useful as the type information source of a distributed
library/framework; it could also be helpful for splitting a larger project to improve
compiling performance and division cooperation.

[18]

Tools and Frameworks

sourceMap

By enabling this option, TypeScript compiler will emit source maps along with compiled
JavaScript.

jsx

TypeScript provides built-in support for React JSX (. t sx) files. By specifying this option
with value react, TypeScript compiler will compile . t sx files to plain JavaScript files. Or
with value preserve, it will output . jsx files so you can post-process these files with other
JSX compilers.

noEmitOnError

By default, TypeScript will emit outputs no matter whether type errors are found or not. If
this is not what you want, you may set this option to true.

noEmitHelpers

When compiling a newer ECMAScript feature to a lower target version of JavaScript,
TypeScript compiler will sometimes generate helper functions such as __extends (ES6 to
lower versions), and __awaiter (ES7 to lower versions).

Due to certain reasons, you may want to write your own helper functions, and prevent
TypeScript compiler from emitting these helpers.

nolmplicitAny
As TypeScript is a superset of JavaScript, it allows variables and parameters to have no type
notation. However, it could help to make sure everything is typed.

By enabling this option, TypeScript compiler will give errors if the type of a
variable/parameter is not specified and cannot be inferred by its context.

experimentalDecorators*

As decorators, at the time of writing this book, has not yet reached a stable stage of the new
ECMAScript standard, you need to enable this option to use decorators.

[19]

Tools and Frameworks

emitDecoratorMetadata*

Runtime type information could sometimes be useful, but TypeScript does not yet support
reflection (maybe it never will). Luckily, we get decorator metadata that will help under
certain scenarios.

By enabling this option, TypeScript will emit decorators along with a
Reflect.metadata () decorator which contains the type information of the decorated
target.

outDir

Usually, we do not want compiled files to be in the same folder of source code. By
specifying outDir, you can tell the compiler where you would want the compiled
JavaScript files to be.

outFile

For small browser projects, we might want to have all the outputs concatenated as a single
file. By enabling this option, we can achieve that without extra build tools.

rootDir

The rootDir option is to specify the root of the source code. If omitted, the compiler would
use the longest common path of source files. This might take seconds to understand.

For example, if we have two source files, src/foo.ts and src/bar.ts,and a
tsconfig. json file in the same directory of the src folder, the TypeScript compiler will
use src as the rootDir, so when emitting files to the outDir (let's say out), they will be
out/foo.js and out/bar. js.

However, if we add another source file test /test.ts and compile again, we'll get those
outputs located in out /src/foo. js, out/src/bar. js,and out/test/test.js
respectively. When calculating the longest common path, declaration files are not involved
as they have no output.

Usually, we don't need to specify rootDir, but it would be safer to have it configured.

[20]

Tools and Frameworks

preserveConstEnums

Enum is a useful tool provided by TypeScript. When compiled, it's in the form of an
Enum.member expression. Constant enum, on the other hand, emits number literals directly,
which means the Enum object is no longer necessary.

And thus TypeScript, by default, will remove the definitions of constant enums in the
compiled JavaScript files.

By enabling this option, you can force the compiler to keep these definitions anyway.

strictNullChecks

TypeScript 2.1 makes it possible to explicitly declare a type with undefined or null as its
subtype. And the compiler can now perform more thorough type checking for empty
values if this option is enabled.

stripInternal*

When emitting declaration files, there could be something you'll need to use internally but
without a better way to specify the accessibility. By commenting this code with /**
@internal */ (JSDoc annotation), TypeScript compiler then won't emit them to
declaration files.

isolatedModules

By enabling this option, the compiler will unconditionally emit imports for unresolved files.

Options suffixed with * are experimental and might have already been
removed when you are reading this book. For a more complete and up-to-
date compiler options list, please check out http://www.typescriptlang.
org/docs/handbook/compiler—options.html.

Adding source map support

Source maps can help a lot while debugging, no matter for a debugger or for error stack
traces from a log.

To have source map support, we need to enable the sourceMap compiler option in
tsconfig.json. Extra configurations might be necessary to make your debugger work
with source maps.

[21]

http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html

Tools and Frameworks

For error stack traces, we can use the help of the source-map-support package:

$ npm install source-map-support —-—-save

To put it into effect, you can import this package with its register submodule in your
entry file:

import 'source-map-support/register';

Downloading declarations using typings

JavaScript has a large and booming ecosystem. As the bridge connecting TypeScript and
other JavaScript libraries and frameworks, declaration files are playing a very important
role.

With the help of declaration files, TypeScript developer can use existing JavaScript libraries
with nearly the same experience as libraries written in TypeScript.

Thanks to the efforts of the TypeScript community, almost every popular JavaScript library
or framework got its declaration files on a project called DefinitelyTyped. And there has
already been a tool called tsd for declaration file management. But soon, people realized
the limitation of a single huge repository for everything, as well as the issues t sd cannot
solve nicely. Then typings is gently becoming the new tool for TypeScript declaration file
management.

Installing typings
typings is just another Node.js package with a command-line interface like TypeScript
compiler. To install typings, simply execute the following;:

$ npm install typings -g

To make sure it has been installed correctly, you can now try the typings command with
argument —-version:

$ typings —--version
1.x.x

[22]

Tools and Frameworks

Downloading declaration files

Create a basic Node.js project with a proper tsconfig. json (module option set as
commonjs), and a test.ts file:

import * as express from 'express';

Without the necessary declaration files, the compiler would complain with Cannot find
module express. And, actually, you can't even use Node.js APIs such as process.exit ()
or require Node.js modules, because TypeScript itself just does not know what Node.js is.

To begin with, we'll need to install declaration files of Node.js and Express:

$ typings install env~node --global
$ typings install express

If everything goes fine, t ypings should've downloaded several declaration files and saved
them to folder typings, including node.d.ts, express.d.ts, and so on. And I guess
you've already noticed the dependency relationship existing on declaration files.

If this is not working for you and typings complains with Unable to find
“express” (“npm”) in the registry then you might need to do it the hard
way — to manually install Express declaration files and their dependencies
using the following command:

$ typings install dt~<package-name> —global

The reason for that is the community might still be moving from
DefinitelyTyped to the typings registry. The prefix dt~ tells typings
to download declaration files from DefintelyTyped, and ——global
option tells typings to save these declaration files as ambient modules
(namely declarations with module name specified).

typings has several registries, and the default one is called npm (please understand this
npm registry is not the npm package registry). So, if no registry is specified with <source>~
prefix or ——source option, it will try to find declaration files from its npm registry. This
means that typings install express isequivalentto typings install
npm~exXpress Or typings install express —-source npm.

While declaration files for npm packages are usually available on the npm registry,
declaration files for the environment are usually available on the env. registry. As those
declarations are usually global, a ~—global option is required for them to install correctly.

[23]

Tools and Frameworks

Option “save”

typings actually provides a ——save option for saving the typing names and file sources to
typings. json. However, in my opinion, this option is not practically useful.

It's great to have the most popular JavaScript libraries and frameworks typed, but these
declaration files, especially declarations not frequently used, can be inaccurate, which
means there's a fair chance that you will need to edit these files yourself.

It would be nice to contribute declarations, but it would also be more flexible to have
typings m managed by source control as part of the project code.

Testing with Mocha and Istanbul

Testing could be an important part of a project, which ensures feature consistency and
discovers bugs earlier. It is common that a change made for one feature could break another
working part of the project. A robust design could minimize the chance but we still need
tests to make sure.

It could lead to an endless discussion about how tests should be written and there are
interesting code design techniques such as test-driven development (TDD); though there
has been a lot of debates around it, it still worth knowing and may inspire you in certain
ways.

Mocha and Chai

Mocha has been one of the most popular test frameworks for JavaScript, while Chai is a
good choice as an assertion library. To make life easier, you may write tests for your own
implementations of contents through this book using Mocha and Chai.

To install Mocha, simply run the following command, and it will add mocha as a global
command-line tool just like t sc and typings:

$ npm install mocha -g

Chai, on the other hand, is used as a module of a project, and should be installed under the
project folder as a development dependency:

$ npm install chai --save-dev

[24]

Tools and Frameworks

Chai supports should style assertion. By invoking chai.should (), it adds the should
property to the prototype of Object, which means you can then write assertions such as the
following;:

'foo'.should.not.equal ('bar');
'typescript'.should.have.length (10);

Writing tests in JavaScript

By executing the command mocha, it will automatically run tests inside the test folder.
Before we start to write tests in TypeScript, let's try it out in plain JavaScript and make sure
it's working.

Create a file test/starter. js and save it with the following code:

require ('chai') .should();
describe ('some feature', () => {
it ('should pass', () => {
'foo'.should.not.equal ('bar');

)i

it ('should error', () => {
() =>{
throw new Error();
}) .should.throw() ;
}) i
}) i

Run mocha under the project folder and you should see all tests passing.

Writing tests in TypeScript

Tests written in TypeScript have to be compiled before being run; where to put those files
could be a tricky question to answer.

Some people might want to separate tests with their own tsconfig. json:

src/tsconfig.json
test/tsconfig.json

They may also want to put output files somewhere reasonable:

out/app/
out/test/

[25]

Tools and Frameworks

However, this will increase the cost of build process management for small projects. So, if
you do not mind having src in the paths of your compiled files, you can have only one
tsconfig.json to get the job done:

src/
test/
tsconfig.json

The destinations will be as follows:

out/src/
out/test/

Another option I personally prefer is to have tests inside of src/test, and use the test
folder under the project root for Mocha configurations:

src/

src/test/
tsconfig.json

The destinations will be as follows:

out/
out/test/

But, either way, we'll need to configure Mocha properly to do the following:

¢ Run tests under the out /test directory
¢ Configure the assertion library and other tools before starting to run tests

To achieve these, we can take advantage of the mocha. opts file instead of specifying
command-line arguments every time. Mocha will combine lines in the mocha . opts file
with other command-line arguments given while being loaded.

Create test/mocha.opts with the following lines:

--require ./test/mocha.js
out/test/

As you might have guessed, the first line is to tell Mocha to require . /test/mocha. js
before starting to run actual tests. And the second line tells Mocha where these tests are
located.

And, of course, we'll need to create test /mocha. js correspondingly:

require('chai') .should();

[26]

Tools and Frameworks

Almost ready to write tests in TypeScript! But TypeScript compiler does not know how
would function describe or it be like, so we need to download declaration files for
Mocha:

$ typings install env~mocha --global

Now we can migrate the test/starter. js file to src/test/starter.ts with nearly no
change, but removing the first line that enables the should style assertion of Chai, as we
have already put it into test /mocha. js.

Compile and run; buy me a cup of coffee if it works. But it probably won't. We've talked
about how TypeScript compiler determines the root of source files when explaining the
rootDir compiler option. As we don't have any TypeScript files under the src folder (not
including its subfolders), TypeScript compiler uses src/test as the rootDir. Thus the
compiled test files are now under the out folder instead of the expected out /test.

To fix this, either explicitly specify rootDir, or just add the first non-test TypeScript file to
the src folder.

Getting coverage information with Istanbul

Coverage could be important for measuring the quality of tests. However, it might take
much effort to reach a number close to 100%, which could be a burden for developers. To
balance efforts on tests and code that bring direct value to the product, there would go
another debate.

Install Istanbul via npm just as with the other tools:
$ npm install istanbul -g

The subcommand for Istanbul to generate code coverage information is istanbul cover.
It should be followed by a JavaScript file, but we need to make it work with Mocha, which
is a command-line tool. Luckily, the entry of the Mocha command is, of course, a JavaScript
file.

To make them work together, we'll need to install a local (instead of global) version of
Mocha for the project:

$ npm install mocha --save-dev

[27]

Tools and Frameworks

After installation, we'll get the file _mocha under node_modules/mocha/bin, which is the
JavaScript entry we were looking for. So now we can make Istanbul work:

$ istanbul cover node_modules/mocha/bin/_mocha
Then you should've got a folder named coverage, and within it the coverage report.

Reviewing the coverage report is important; it can help you decide whether you need to
add tests for specific features and code branches.

Testing in real browsers with Karma

We've talked about testing with Mocha and Istanbul for Node.js applications. It is an
important topic for testing code that runs in a browser as well.

Karma is a test runner for JavaScript that makes testing in real browsers on real devices
much easier. It officially supports the Mocha, Jasmine, and JUnit testing frameworks, but it's
also possible for Karma to work with any framework via a simple adapter.

Creating a browser project

A TypeScript application that runs in browsers can be quite different from a Node.js one.
But if you know what the project should look like after the build, you should already have
clues on how to configure that project.

To avoid introducing too many concepts and technologies not directly related, I will keep
things as simple as possible:

e We're not going to use module loaders such as Require.js
e We're not going to touch the code packaging process

This means we'll go with separated output files that need to be put into an HTML file with a
script tag manually. Here's the tsconfig. json we'll be playing with; notice that we no
longer have the module option, set:

{

"compilerOptions": {
"target": "esbH",
"rootDir": "src",
"outDir": "out"

I

"exclude": [

"Out ",

[28]

Tools and Frameworks

"node_modules"

}

Then let's create package. json and install packages mocha and chai with their
declarations:

$ npm init

$ npm install mocha chai —--save-dev
$ typings install env~mocha —--global
$ typings install chai

And to begin with, let's fill this project with some source code and tests.

Create src/index.ts with the following code:

function getLength(str: string): number {
return str.length;

}
And create src/test/test.ts with some tests:

describe ('get length', () => {
it ('""abc" should have length 3', () => {
getLength ('abc') .should.equal (3);
)i

it ('"" should have length 0', () => {
getLength('') .should.equal (0);
)i
)i

Again, in order to make the should style assertion work, we'll need to call chai.should()
before tests start. To do so, create file test /mocha. js just like we did in the Node.js
project, though the code line slightly differs, as we no longer use modules:

chai.should();

Now compile these files with t sc, and we've got our project ready.

[29]

Tools and Frameworks

Installing Karma

Karma itself runs on Node.js, and is available as an npm package just like other Node.js
tools we've been using. To install Karma, simply execute the npm install command in the
project directory:

$ npm install karma —--save-dev

And, in our case, we are going to have Karma working with Mocha, Chai, and the browser
Chrome, so we'll need to install related plugins:

$ npm install karma-mocha karma-chai karma-chrome-launcher —--save-dev

Before we configure Karma, it is recommended to have karma-c1li installed globally so
that we can execute the karma command from the console directly:

$ npm install karma-cli -g

Configuring and starting Karma

The configurations are to tell Karma about the testing frameworks and browsers you are
going to use, as well as other related information such as source files and tests to run.

To create a Karma configuration file, execute karma init and answer its questions:

e Testing framework: Mocha

¢ Require.js: no

¢ Browsers: Chrome (add more if you like; be sure to install the corresponding
launchers)

Source and test files:
e test/mocha. js (the file enables should style assertion)

e out/*.js (source files)
e out/test/*.]s (test files)

Files to exclude: empty
e Watch for changes: yes

Now you should see a karma.conf. js file under the project directory; open it with your
editor and add 'chai" to the list of option frameworks.

Almost there! Execute the command karma start and, if everything goes fine, you should
have specified browsers opened with the testing results being logged in the console in
seconds.

[30]

Tools and Frameworks

Integrating commands with npm

The npm provides a simple but useful way to define custom scripts that can be run with the
npm run command. And it has another advantage — when npm run a custom script, it adds
node_modules/.bin to the PATH. This makes it easier to manage project-related
command-line tools.

For example, we've talked about Mocha and Istanbul. The prerequisite for having them as
commands is to have them installed globally, which requires extra steps other than npm
install. Now we can simply save them as development dependencies, and add custom
scripts in package. json:

"scripts": {

"test": "mocha",

"cover": "istanbul cover node_modules/mocha/bin/_mocha"
}I
"devDependencies": {

"mocha": "latest",

"istanbul": "latest"

}

Now you can run test with npm run test (or simply npm test), and run cover with
npm run cover without installing these packages globally.

Why not other fancy build tools?

You might be wondering: why don't we use a build system such as Gulp to set up our
workflow? Actually, when I started to write this chapter, I did list Gulp as the tool we were
going to use. Later, I realized it does not make much sense to use Gulp to build the
implementations in most of the chapters in this book.

There is a message I want to deliver: balance.

Once, I had a discussion on balance versus principles with my boss. The disagreement was
clear: he insisted on controllable principles over subjective balance, while I prefer contextual
balance over fixed principles.

Actually, I agree with him, from the point of view of a team leader. A team is usually built
up with developers at different levels; principles make it easier for a team to build high-
quality products, while not everyone is able to find the right balance point.

However, when the role turns from a productive team member to a learner, it is important
to learn and to feel the right balance point. And that's called experience.

[31]

Tools and Frameworks

Summary

The goal of this chapter was to introduce a basic workflow that could be used by the reader
to implement the design patterns we'll be discussing.

We talked about the installation of TypeScript compiler that runs on Node.js, and had brief
introductions to popular TypeScript editors and IDEs. Later, we spent quite a lot of pages
walking through the tools and frameworks that could be used if the reader wants to have
some practice with implementations of the patterns in this book.

With the help of these tools and frameworks, we've built a minimum workflow that
includes creating, building, and testing a project. And talking about workflows, you must
have noticed that they slightly differ among applications for different runtimes.

In the next chapter, we'll talk about what may go wrong and mess up the entire project
when its complexity keeps growing. And we'll try to come up with specific patterns that can
solve the problems this very project faces.

[32]

The Challenge of Increasing
Complexity

The essence of a program is the combination of possible branches and automated selections
based on certain conditions. When we write a program, we define what's going on in a
branch, and under what condition this branch will be executed.

The number of branches usually grows quickly during the evolution of a project, as well as
the number of conditions that determine whether a branch will be executed or not.

This is dangerous for human beings, who have limited brain capacities.

In this chapter, we are going to implement a data synchronizing service. Starting by
implementing some very basic features, we'll keep adding stuff and see how things go.

The following topics will be covered:

¢ Designing a multi-device synchronizing strategy

e Useful JavaScript and TypeScript techniques and hints that are related, including
objects as maps and the string literal type

e How the Strategy Pattern helps in a project

The Challenge of Increasing Complexity

Implementing the basics

Before we start to write actual code, we need to define what this synchronizing strategy will
be like. To keep the implementation from unnecessary distractions, the client will
communicate with the server directly through function calls instead of using HTTP requests
or Sockets. Also, we'll use in-memory storage, namely variables, to store data on both client
and server sides.

Because we are not separating the client and server into two actual applications, and we are
not actually using backend technologies, it does not require much Node.js experience to
follow this chapter.

However, please keep in mind that even though we are omitting network and database
requests, we hope the core logic of the final implementation could be applied to a real
environment without being modified too much. So, when it comes to performance concerns,
we still need to assume limited network resources, especially for data passing through the
server and client, although the implementation is going to be synchronous instead of
asynchronous. This is not supposed to happen in practice, but involving asynchronous
operations will introduce much more code, as well as many more situations that need to be
taken into consideration. But we will have some useful patterns on asynchronous
programming in the coming chapters, and it would definitely help if you try to implement
an asynchronous version of the synchronizing logic in this chapter.

A client, if without modifying what's been synchronized, stores a copy of all the data
available on the server, and what we need to do is to provide a set of APIs that enable the
client to keep its copy of data synchronized.

So, it is really simple at the beginning: comparing the last-modified timestamp. If the
timestamp on the client is older than what's on the server, then update the copy of data
along with new timestamp.

Creating the code base

Firstly, let's create server.ts and client.ts files containing the server class and
Client class respectively:

export class Server {
/...
}

export class Client {

/...

[34]

The Challenge of Increasing Complexity

}

I prefer to create an index. ts file as the package entry, which handles what to export
internally. In this case, let's export everything:

export * from './server';
export * from './client';

To import the Server and Client classes from a test file (assuming src/test/test.ts),
we can use the following codeto s:

1_./1;

import { Server, Client } from

Defining the initial structure of the data to be
synchronized

Since we need to compare the timestamps from the client and server, we need to have a
timestamp property on the data structure. I would like to have the data to synchronize as a
string, so let's add a DataStore interface with a t imestamp property to the server.ts
file:

export interface DataStore {
timestamp: number;
data: string;

Getting data by comparing timestamps

Currently, the synchronizing strategy is one-way, from the server to the client. So what we
need to do is simple: we compare the timestamps; if the server has the newer one, it
responds with data and the server-side timestamp; otherwise, it responds with undefined:

class Server {

store: DataStore = {
timestamp: O,
data: "'
}i
getData (clientTimestamp: number): DataStore {

if (clientTimestamp < this.store.timestamp) {
return this.store;

} else {
return undefined;

[35]

The Challenge of Increasing Complexity

}

Now we have provided a simple API for the client, and it's time to implement the client:

import { Server, DataStore } from './';

export class Client {
store: DataStore = {
timestamp: O,
data: undefined
}i
constructor (
public server: Server

) {0}

Prefixing a constructor parameter with access modifiers (including
public, private, and protected) will create a property with the same
name and corresponding accessibility. It will also assign the value
automatically when the constructor is called.

Now we need to add a synchronize method to the Client class that does the job:

synchronize () : void {
let updatedStore = this.server.getData(this.store.timestamp) ;
if (updatedStore) {
this.store = updatedStore;
t
t

That's easily done. However, are you already feeling somewhat awkward with what we've
written?

Two-way synchronizing

Usually, when we talk about synchronization, we get updates from the server and push
changes to the server as well. Now we are going to do the second part, pushing the changes
if the client has newer data.

[36]

[vww . allitebooks.cond

http://www.allitebooks.org

The Challenge of Increasing Complexity

But first, we need to give the client the ability to update its data by adding an update
method to the Client class:

update (data: string): void {
this.store.data = data;
this.store.timestamp = Date.now();

}

And we need the server to have the ability to receive data from the client as well. So we
rename the getData method of the Server class as synchronize and make it satisfy the
new job:

synchronize (clientDataStore: DataStore): DataStore {
if (clientDataStore.timestamp > this.store.timestamp) {
this.store = clientDataStore;
return undefined;
} else if (clientDataStore.timestamp < this.store.timestamp) {
return this.store;
} else {
return undefined;
}
}

Now we have the basic implementation of our synchronizing service. Later, we'll keep
adding new things and make it capable of dealing with a variety of scenarios.

Things that went wrong while implementing the
basics

Currently, what we've written is just too simple to be wrong. But there are still some
semantic issues.

Passing a data store from the server to the client does
not make sense

We used DataStore as the return type of the synchronize method on server. But what
we were actually passing through is not a data store, but information that involves data and
its timestamp. The information object just happened to have the same properties as a data
store at this point in time.

[37]

The Challenge of Increasing Complexity

Also, it will be misleading to people who will later read your code (including yourself in the
future). Most of the time, we are trying to eliminate redundancies. But that does not have to
mean everything that looks the same. So let's make it two interfaces:

interface DataStore {
timestamp: number;
data: string;

}

interface DataSyncingInfo {
timestamp: number;
data: string;

}
I'would even prefer to create another instance, instead of directly returning this.store:

return {
timestamp: this.store.timestamp,
data: this.store.data

}i

However, if two pieces of code with different semantic meanings are doing the same thing
from the perspective of code itself, you may consider extracting that part as a utility.

Making the relationships clear

Now we have two separated interfaces, DataStore and DataSyncingInfo, in server.ts.
Obviously, DataSyncingInfo should be a shared interface between the server and the
client, while DataStore happens to be the same on both sides, but it's not actually shared.

So what we are going to do is to create a separate shared.d.ts (it could also be
shared.ts if it contains more than typings) that exports DataSyncingInfo and add
another DataStore to client.ts.

Do not follow this blindly. Sometimes it is designed for the server and the
client to have exactly the same stores. If that's the situation, the interface
should be shared.

[38]

The Challenge of Increasing Complexity

Growing features

What we've done so far is basically useless. But, from now on, we will start to add features
and make it capable of fitting in practical needs, including the capability of synchronizing
multiple data items with multiple clients, and merging conflicts.

Synchronizing multiple items

Ideally, the data we need to synchronize will have a lot of items contained. Directly
changing the type of data to an array would work if there were only very limited number
of these items.

Simply replacing data type with an array

Now let's change the type of the data property of DataStore and DataSyncingInfo
interfaces to st ring []. With the help of TypeScript, you will get errors for unmatched
types this change would cause. Fix them by annotating the correct types.

But obviously, this is far from an efficient solution.

Server-centered synchronization

If the data store contains a lot of data, the ideal approach would be only updating items that
are not up-to-date.

For example, we can create a timestamp for every single item and send these timestamps to
the server, then let the server decide whether a specific data item is up-to-date. This is a
viable approach for certain scenarios, such as checking updates for software extensions. It is
okay to occasionally send even hundreds of timestamps with item IDs on a fast network,
but we are going to use another approach for different scenarios, or I won't have much to
write.

User data synchronization of offline apps on a mobile phone is what we are going to deal
with, which means we need to try our best to avoid wasting network resources.

data synchronization and checking extension updates? Think about the

Here is an interesting question. What are the differences between user
0 size of data, issues with multiple devices, and more.

[39]

The Challenge of Increasing Complexity

The reason why we thought about sending timestamps of all items is for the server to
determine whether certain items need to be updated. However, is it necessary to have the
timestamps of all data items stored on the client side?

What if we choose not to store the timestamp of data changing, but of data being
synchronized with the server? Then we can get everything up-to-date by only sending the
timestamp of the last successful synchronization. The server will then compare this
timestamp with the last modified timestamps of all data items and decide how to respond.

As the title of this part suggests, the process is server-centered and relies on the server to
generate the timestamps (though it does not have to, and practically should not, be the
stamp of the actual time).

If you are getting confused about how these timestamps work, let's try
again. The server will store the timestamps of the last time items were
synchronized, and the client will store the timestamp of the last successful
synchronization with the server. Thus, if no item on the server has a later
timestamp than the client, then there's no change to the server data store
after that timestamp. But if there are some changes, by comparing the
timestamp of the client with the timestamps of server items, we'll know
which items are newer.

Synchronizing from the server to the client

Now there seems to be quite a lot to change. Firstly, let's handle synchronizing data from
server to client.

This is what's expected to happen on the server side:

¢ Add a timestamp and identity to every data item on the server
e Compare the client timestamp with every data item on the server

We don't need to actually compare the client timestamp with every item

on server if those items have a sorted index. The performance would be
acceptable using a database with a sorted index.

¢ Respond with items newer than what the client has as well as a new timestamp.

[40]

The Challenge of Increasing Complexity

And here's what's expected to happen on the client side:

e Synchronize with the last timestamp sent to the server
e Update the local store with new data responded by the server

e Update the local timestamp of the last synchronization if it completes without
error

Updating interfaces

First of all, we have now an updated data store on both sides. Starting with the server, the
data store now contains an array of data items. So let's define the ServerDataItem
interface and update serverbDataStore as well:

export interface ServerDataltem {
id: string;
timestamp: number;
value: string;

}

export interface ServerDataStore {
items: {
[id: string]: ServerDataltem;
bi

The { [id: string]: ServerDataltem } type describes an object
with id of type string as a key and has the value of type
ServerDataItem. Thus, anitem of type ServerDataItem can be
accessed by items['the-id'].

And for the client, we now have different data items and a different store. The response
contains only a subset of all data items, so we need IDs and a map with ID as the index to
store the data:

export interface ClientDataltem {
id: string;
value: string;

}

export interface ClientDataStore {
timestamp: number;
items: {
[id: string]: ClientDataltem;
}i

[41]

The Challenge of Increasing Complexity

Previously, the client and server were sharing the same DataSyncingInfo, but that's going
to change. As we'll deal with server-to-client synchronizing first, we care only about the
timestamp in a synchronizing request for now:

export interface SyncingRequest {
timestamp: number;

}

As for the response from the server, it is expected to have an updated timestamp with data
items that have changed compared to the request timestamp:

export interface SyncingResponse {
timestamp: number;
changes: {
[id: string]: string;
bi
}

I prefixed those interfaces with Server and Client for better differentiation. But it's not
necessary if you are not exporting everything from server.ts and client.ts (in
index.ts).

Updating the server side

With well-defined data structures, it should be pretty easy to achieve what we expected. To
begin with, we have the synchronize method, which accepts a SsyncingRequest and
returns a SyncingResponse; and we need to have the updated timestamp as well:

synchronize (request: SyncingRequest): SyncingResponse {
let lastTimestamp = request.timestamp;
let now = Date.now();
let serverChanges: ServerChangeMap = Object.create(null);
return {
timestamp: now,
changes: serverChanges
bi

For the serverChanges object, { } (an object literal) might be the first
thing (if not an ES6 Map) that comes to mind. But it's not absolutely safe to
do so, because it would refuse __proto__ as a key. The better choice
would be Object.create (null), which accepts all strings as its key.

[42]

The Challenge of Increasing Complexity

Now we are going to add items that are newer than the client to serverChanges:
let items = this.store.items;

for (let id of Object.keys(items)) {
let item = items[id];
if (item.timestamp > lastTimestamp) A
serverChanges[id] = item.value;

}
Updating the client side

As we've changed the type of items under ClientDataStore to a map, we need to fix the
initial value:

store: ClientDataStore = {
timestamp: O,
items: Object.create(null)
}i

Now let's update the synchronize method. Firstly, the client is going to send a request
with a timestamp and get a response from the server:

synchronize () : void {
let store = this.store;
let response = this.server.synchronize ({
timestamp: store.timestamp
P
}

Then we'll save the newer data items to the store:

let clientItems = store.items;
let serverChanges = response.changes;

for (let id of Object.keys (serverChanges)) {
clientItems[id] = {
id,
value: serverChanges([id]
i
}

Finally, update the timestamp of the last successful synchronization:

clientStore.timestamp = response.timestamp;

[43]

The Challenge of Increasing Complexity

Updating the synchronization timestamp should be the last thing to do
during a complete synchronization process. Make sure it's not stored
earlier than data items, or you might have a broken offline copy if there's
any errors or interruptions during synchronizing in the future.

To ensure that this works as expected, an operation with the same change
information should give the same results even if it's applied multiple
times.

Synchronizing from client to server

For a server-centered synchronizing process, most of the changes are made through clients.
Consequently, we need to figure out how to organize these changes before sending them to
the server.

One single client only cares about its own copy of data. What difference would this make
when comparing to the process of synchronizing data from the server to clients? Well, think
about why we need the timestamp of every data item on the server in the first place. We
need them because we want to know which items are new compared to a specific client.

Now, for changes on a client: if they ever happen, they need to be synchronized to the
server without requiring specific timestamps for comparison.

However, we might have more than one client with changes that need to be synchronized,
which means that changes made later in time might actually get synchronized earlier, and
thus we'll have to resolve conflicts. To achieve that, we need to add the last modified time
back to every data item on the server and the changed items on the client.

I've mentioned that the timestamps stored on the server for finding out what needs to be
synchronized to a client do not need to be (and better not be) an actual stamp of a physical
time point. For example, it could be the count of synchronizations that happened between
all clients and the server.

Updating the client side

To handle this efficiently, we may create a separated map with the IDs of the data items that
have changed as keys and the last modified time as the value in ClientDataStore:

export interface ClientDataStore {
timestamp: number;
items: {
[id: string]: ClientDataltem;
bi

[44]

The Challenge of Increasing Complexity

changed: {
[id: string]: number;
}i
t

You may also want to initialize its value as Object.create (null).

Now when we update an item in the client store, we add the last modified time to the
changed map as well:

update (id: string, value: string): void {
let store = this.store;
store.items[1id] = {
id,
value
}i
store.changed[id] = Date.now();

}

A single timestamp in SyncingRequest certainly won't do the job any more; we need to
add a place for the changed data, a map with data item ID as the index, and the changed
information as the value:

export interface ClientChange {
lastModifiedTime: number;
value: string;

}

export interface SyncingRequest {
timestamp: number;
changes: {
[id: string]: ClientChange;
i
}

Here comes another problem. What if a change made to a client data item is done offline,
with the system clock being at the wrong time? Obviously, we need some time calibration
mechanisms. However, there's no way to make perfect calibration. We'll make some
assumptions so we don't need to start another chapter for time calibration:

e The system clock of a client may be late or early compared to the server. But it
ticks at a normal speed and won't jump between times.

¢ The request sent from a client reaches the server in a relatively short time.

[45]

The Challenge of Increasing Complexity

With those assumptions, we can add those building blocks to the client-side synchronize
method:

1. Add client-side changes to the synchronizing request (of course, before sending it
to the server):

let clientItems = store.items;
let clientChanges: ClientChangeMap = Object.create (null);

let changedTimes = store.changed;

for (let id of Object.keys (changedTimes)) {
clientChanges[id] = {
lastModifiedTime: changedTimes[id],
value: clientItems[id].value
bi
}

2. Synchronize changes to the server with the current time of the client's clock:

let response = this.server.synchronize ({
timestamp: store.timestamp,
clientTime: Date.now(),
changes: clientChanges

P

3. Clean the changes after a successful synchronization:
store.changed = Object.create(null);
Updating the server side

If the client is working as expected, it should send synchronizing requests with changes. It's
time to enable the server to handling those changes from the client.

There are going to be two steps for the server-side synchronization process:

1. Apply the client changes to server data store.
2. Prepare the changes that need to be synchronized to the client.

First, we need to add 1lastModifiedTime to server-side data items, as we mentioned
before:

export interface ServerDataltem {
id: string;
timestamp: number;
lastModifiedTime: number;

[46]

The Challenge of Increasing Complexity

value: string;

}

And we need to update the synchronize method:

let clientChanges = request.changes;
let now = Date.now();

for (let id of Object.keys(clientChanges)) {
let clientChange = clientChanges([id];
if (
hasOwnProperty.call (items, id) &&

items[id] .lastModifiedTime > clientChange.lastModifiedTime
) A

continue;
}
items[id] = {
id,
timestamp: now,
lastModifiedTime,
value: clientChange.value

}i

We can actually use the in operator instead of hasOwnProperty here
because the items object is created with null as its prototype. But a
reference to hasOwnProperty will be your friend if you are using objects
created by object literals, or in other ways, such as maps.

We already talked about resolving conflicts by comparing the last modified times. At the
same time, we've made assumptions so we can calibrate the last modified times from the
client easily by passing the client time to the server while synchronizing.

What we are going to do for calibration is to calculate the offset of the client time compared
to the server time. And that's why we made the second assumption: the request needs to
easily reach the server in a relatively short time. To calculate the offset, we can simply
subtract the client time from the server time:

let clientTimeOffset = now - request.clientTime;

To make the time calibration more accurate, we would want the earliest
timestamp after the request hits the server to be recorded as “now”. So in
practice, you might want to record the timestamp of the request hitting the
server before start processing everything. For example, for HTTP request,
you may record the timestamp once the TCP connection gets established.

[471]

The Challenge of Increasing Complexity

And now, the calibrated time of a client change is the sum of the original time and the
offset. We can now decide whether to keep or ignore a change from the client by comparing
the calibrated last modified time. It is possible for the calibrated time to be greater than the
server time; you can choose either to use the server time as the maximum value or accept a
small inaccuracy. Here, we will go the simple way:

let lastModifiedTime = Math.min(
clientChange.lastModifiedTime + clientTimeOffset,
now

)

if |

hasOwnProperty.call (items, id) &&

items[id] .lastModifiedTime > lastModifiedTime
) A

continue;

}

To make this actually work, we need to also exclude changes from the server that conflict
with client changes in SyncingResponse. To do so, we need to know what the changes are

that survive the conflict resolving process. A simple way is to exclude items with timestamp
that equals now:

for (let id of Object.keys(items)) {
let item = items[id];

if (
item.timestamp > lastTimestamp &&
item.timestamp !== now

) A
serverChanges[id] = item.value;

}
}

So now we have implemented a complete synchronization logic with the ability to handle
simple conflicts in practice.

[48]

The Challenge of Increasing Complexity

Synchronizing multiple types of data

At this point, we've hard coded the data with the st ring type. But usually we will need to
store varieties of data, such as numbers, booleans, objects, and so on.

If we were writing JavaScript, we would not actually need to change anything, as the
implementation does not have anything to do with certain data types. In TypeScript, we
don't need to do much either: just change the type of every related value to any. But that
means you are losing type safety, which would definitely be okay if you are happy with
that.

But taking my own preferences, I would like every variable, parameter, and property to be
typed if it's possible. So we may still have a data item with value of type any:

export interface ClientDataltem {
id: string;
value: any;

}

We can also have derived interfaces for specific data types:

export interface ClientStringDataltem extends ClientDataltem {
value: string;

}

export interface ClientNumberDataltem extends ClientDatalItem {
value: number;

}

But this does not seem to be good enough. Fortunately, TypeScript provides generics, so we
can rewrite the preceding code as follows:

export interface ClientDataltem<T> {
id: string;
value: T;

}

Assuming we have a store that accepts multiple types of data items — for example, number
and string — we can declare it as follows with the help of the union type:

export interface ClientDataStore {
items: {

[id: string]: ClientDataltem<number string>;

bi

[49]

The Challenge of Increasing Complexity

If you remember that we are doing something for offline mobile apps, you might be
questioning the long property names in changes such as 1astModifiedTime. This is a fair
question, and an easy fix is to use tuple types, maybe along with enums:

const enum ClientChangeIndex {

lastModifiedType,
value
}
type ClientChange<T> = [number, T];
let change: ClientChange<string> = [0, 'foo'l];
let value = change[ClientChangeIndex.value];

You can apply less or more of the typing things we are talking about depending on your
preferences. If you are not familiar with them yet, you can read more here: http://www.typ
escriptlang.org/handbook.

Supporting multiple clients with incremental data

Making the typing system happy with multiple data types is easy. But in the real world, we
don't resolve conflicts of all data types by simply comparing the last modified times. An
example is counting the daily active time of a user cross devices.

It's quite clear that we need to have every piece of active time in a day on multiple devices
summed up. And this is how we are going to achieve that:

1. Accumulate active durations between synchronizations on the client.

2. Add a UID (unique identifier) to every piece of time before synchronizing with
the server.

3. Increase the server-side value if the UID does not exist yet, and then add the UID
to that data item.

But before we actually get our hands on those steps, we need a way to distinguish
incremental data items from normal ones, for example, by adding a type property.

As our synchronizing strategy is server-centered, related information is only required for
synchronizing requests and conflict merging. Synchronizing responses does not need to
include the details of changes, but just merged values.

[50]

http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook

The Challenge of Increasing Complexity

I will stop telling how to update every interface step by step as we are
approaching the final structure. But if you have any problems with that,
you can check out the complete code bundle for inspiration.

Updating the client side

First of all, we need the client to support incremental changes. And if you've thought about
this, you might already be confused about where to put the extra information, such as UIDs.

This is because we were mixing up the concept change (noun) with value. It was not a
problem before because, besides the last modified time, the value is what a change is about.
We used a simple map to store the last modified times and kept the store clean from
redundancy, which balanced well under that scenario.

But now we need to distinguish between these two concepts:

e Value: a value describes what a data item is in a static way

¢ Change: a change describes the information that may transform the value of a
data item from one to another

We need to have a general type of changes as well as a new data structure for incremental
changes with a numeric value:

type DataType = 'value' | 'increment';

interface ClientChange {
type: DataType;
}

interface ClientValueChange<T> extends ClientChange {
type: 'value';
lastModifiedTime: number;
value: T;

}

interface ClientIncrementChange extends ClientChange {
type: 'increment';
uid: string;
increment: number;

[51]

The Challenge of Increasing Complexity

We are using the string literal type here, which was introduced in
TypeScript 1.8. To learn more, please refer to the TypeScript handbook as
we mentioned before.

Similar changes to the data store structure should be made. And when we update an item
on the client side, we need to apply the correct operations based on different data types:

update (id: string, type: 'increment', increment: number): void;
update<T> (id: string, type: 'value', value: T): void;
update<T> (id: string, type: DataType, value: T): void;
update<T> (id: string, type: DataType, value: T): void {

let store = this.store;

let items = store.items;
let storedChanges = store.changes;
if (type === 'value') {
//
} else if (type === 'increment') {
//
} else {

throw new TypeError ('Invalid data type');

}
Use the following code for normal changes (while type equals 'value'):

let change: ClientValueChange<T> = {
type: 'value',
lastModifiedTime: Date.now (),
value
}i
storedChanges[id] = change;
if (hasOwnProperty.call (items, id)) {
items[id] .value = value;
} else {
items[id] = {
id,
type,
value

}i

[52]

The Challenge of Increasing Complexity

For incremental changes, it takes a few more lines:
let storedChange = storedChanges[id] as ClientIncrementChange;

if (storedChange) {
storedChange.increment += <any>value as number;

} else {
storedChange = {
type: 'increment',

uid: Date.now () .toString(),
increment: <any>value as number
ti
storedChanges[id] = storedChange;

It's my personal preference to use <T> for any casting and as T for non-
any castings. Though it has been used in languages like C#, the as
operator in TypeScript was originally introduced for compatibilities with
XML tags in JSX. You can also write <number><any>value or value as
any as number here if you like.

Don't forget to update the stored value. Just change = to += comparing to updating normal
data items:

if (hasOwnProperty.call (items, id)) {
items[id] .value += value;
} else {
items[id] = {
id,
type,
value
bi
}

That's not hard at all. But hey, we see branches.

We are writing branches all the time, but what are the differences between branches such as
if (type === 'foo') { ... }andbranchessuchasif (item.timestamp >
lastTimestamp) { ... }?Let'skeep this question in mind and move on.

With necessary information added by the update method, we can now update the
synchronize method of the client. But there is a flaw in practical scenarios: a
synchronizing request is sent to the server successfully, but the client failed to receive the
response from the server. In this situation, when update is called after a failed
synchronization, the increment is added to the might-be-synchronized change (identified by
its UID), which will be ignored by the server in future synchronizations. To fix this, we'll

[53]

The Challenge of Increasing Complexity

need to add a mark to all incremental changes that have started a synchronizing process,
and avoid accumulating these changes. Thus, we need to create another change for the
same data item.

This is actually a nice hint: as a change is about information that transforms a value from
one to another, several changes pending synchronization might eventually be applied to
one single data item:

interface ClientChangelList<T extends ClientChange> {
type: DataType;
changes: T[];

interface SyncingRequest {
timestamp: number;
changelLists: {
[id: string]: ClientChangelList<ClientChange>;
i

interface ClientIncrementChange extends ClientChange {
type: 'increment';
synced: boolean;
uid: string;
increment: number;

}

Now when we are trying to update an incremental data item, we need to get its last change
from the change list (if any) and see whether it has ever been synchronized. If it has ever
been involved in a synchronization, we create a new change instance. Otherwise, we'll just
accumulate the increment property value of the last change on the client side:

let changelist = storedChangelLists[id];

let changes = changelist.changes;
let lastChange =
changes[changes.length - 1] as ClientIncrementChange;

if (lastChange.synced) {
changes.push ({
synced: false,
uid: Date.now () .toString(),
increment: <any>value as number
} as ClientIncrementChange);
} else {
lastChange.increment += <any>value as number;

[54]

The Challenge of Increasing Complexity

Or, if the change list does not exist yet, we'll need to set it up:

let changelist = {
type: 'increment',
changes: [
{
synced: false,
uid: Date.now () .toString(),
increment: <any>value as number
} as ClientIncrementChange
]
i

store.changelists[id] = changelist;
We also need to update synchronize method to mark an incremental change as synced

before starting the synchronization with the server. But the implementation is for you to do
on your own.

Updating server side

Before we add the logic for handling incremental changes, we need to make server-side
code adapt to the new data structure:

for (let id of Object.keys(clientChangelLists)) {
let clientChangelList = clientChangelLists[id];
let type = clientChangelist.type;

let clientChanges = clientChangelist.changes;
if (type === 'value') {
//
} else if (type === 'increment') {
//
} else {

throw new TypeError ('Invalid data type');

}

The change list of a normal data item will always contain one and only one change. Thus
we can easily migrate what we've written:

let clientChange = changes[0] as ClientValueChange<any>;

Now for incremental changes, we need to cumulatively apply possibly multiple changes in
a single change list to a data item:

let item = items[id];

[55]

The Challenge of Increasing Complexity

for (
let clientChange
of clientChanges as ClientIncrementChange/[]
) A
let {
uid,
increment
} = clientChange;
if (item.uids.indexOf (uid) < 0) {
item.value += increment;
item.uids.push (uid);

}

But remember to take care of the timestamp or cases in which no item with a specified ID
exists:

let item: ServerDataltem<any>;

if (hasOwnProperty.call (items, id)) {

item = items[id];
item.timestamp = now;
} else {
item = items[id] = {
id,
type,
timestamp: now,
uids: T[],
value: 0

bi
}

Without knowing the current value of an incremental data item on the client, we cannot
assure that the value is up to date. Previously, we decided whether to respond with a new
value by comparing the timestamp with the timestamp of the current synchronization, but
that does not work anymore for incremental changes.

A simple way to make this work is by deleting keys from clientChangeLists that still
need to be synchronized to the client. And when preparing responses, it can skip IDs that
are still in clientChangeLists:
if
item.timestamp > lastTimestamp &&

'hasOwnProperty.call (clientChangeLists, id)
) A

serverChanges[id] = item.value;

[56]

The Challenge of Increasing Complexity

Remember to add delete clientChangeLists[id]; for normal data items that did not
survive conflicts resolving as well.

Now we have implemented a synchronizing logic that can do quite a lot jobs for offline
applications. Earlier, I raised a question about increasing branches that do not look good.
But if you know your features are going to end there, or at least with limited changes, it's
not a bad implementation, although we'll soon cross the balance point, as meeting 80% of
the needs won't make us happy enough.

Supporting more conflict merging

Though we have met the needs of 80%, there is still a big chance that we might want some
extra features. For example, we want the ratio of the days marked as available by the user in
the current month, and the user should be able to add or remove days from the list. We can
achieve that in different ways, and we'll choose a simple way, as usual.

We are going to support synchronizing a set with operations such as add and remove, and
calculate the ratio on the client.

New data structures

To describe set changes, we need a new ClientChange type. When we are adding or
removing an element from a set, we only care about the last operation to the same element.
This means that the following:

1. If multiple operations are made to the same element, we only need to keep the
last one.

2. A time property is required for resolving conflicts.

So here are the new types:

enum SetOperation {
add,
remove

}

interface ClientSetChange extends ClientChange {
element: number;
time: number;
operation: SetOperation;

}

[57]

The Challenge of Increasing Complexity

The set data stored on the server side is going to be a little different. We'll have a map with
the element (in the form of a st ring) as key, and a structure with operation and time

properties as the values:

interface ServerSetElementOperationInfo {
operation: SetOperation;
time: number;

}

Now we have enough information to resolve conflicts from multiple clients. And we can
generate the set by keys with a little help from the last operations done to the elements.

Updating client side

And now, the client-side update method gets a new part-time job: saving set changes just
like value and incremental changes. We need to update the method signature for this new
job (do not forget to add 'set' to DataType):

update (
id: string,
type: 'set',

element: number,

operation: SetOperation
)« void;
update<T> (

id: string,

type: DataType,

value: T,

operation?: SetOperation
)« void;

We also need to add another else if:

else if (type === 'set') {
let element = <any>value as number;
if (hasOwnProperty.call (storedChangelLists, id)) |
//
} else {
//

}

[58]

The Challenge of Increasing Complexity

If there are already operations made to this set, we need to find and remove that last
operation to the target element (if any). Then append a new change with the latest
operation:

let changelist = storedChangelLists[id];
let changes = changelist.changes as ClientSetChangel];

for (let i = 0; i < changes.length; i++) {

let change = changes([i];

if (change.element === element) {
changes.splice (i, 1);
break;

changes.push ({
element,
time: Date.now(),
operation

1)

If no change has been made since last successful synchronization, we'll need to create a new
change list for the latest operation:

let changelist: ClientChangeList<ClientSetChange> = {
type: 'set',

changes: [
{
element,
time: Date.now (),
operation
t
]
ti
storedChangelists[id] = changelist;

And again, do not forget to update the stored value. This is a little bit more than just
assigning or accumulating the value, but it should still be quite easy to implement.

[59]

The Challenge of Increasing Complexity

Updating the server side

Just like we've done with the client, we need to add a corresponding else if branch to
merge changes of type 'set '. We are also deleting the ID from clientChangeLists
regardless of whether there are newer changes for a simpler implementation:

else if (type === 'set') {
let item: ServerDataltem<({
[element: string]: ServerSetElementOperationInfo;
}>;
delete clientChangeLists[id];
}

The conflict resolving logic is quite similar to what we do to the conflicts of normal values.
We just need to make comparisons to each element, and only keep the last operation.

And when preparing the response that will be synchronized to the client, we can generate
the set by putting together elements with add as their last operations:

if (item.type === 'set') {
let operationInfos: {
[element: string]: ServerSetElementOperationInfo;
} = item.value;
serverChanges[id] = Object
.keys (operationInfos)
.filter (element =>
operationInfos[element] .operation ===
SetOperation.add
)
.map (element => Number (element));
} else {
serverChanges[id] = item.value;

}

Finally, we have a working mess (if it actually works). Cheers!

Things that go wrong while implementing
everything

When we started to add features, things were actually fine, if you are not obsessive about

pursuing the feeling of design. Then we sensed the code being a little awkward as we saw
more and more nested branches.

[60]

The Challenge of Increasing Complexity

So now it's time to answer the question, what are the differences between the two kinds of
branch we wrote? My understanding of why I am feeling awkward about the 1 £ (type
=== 'foo') { ... }branchis thatit's not strongly related to the context. Comparing
timestamps, on the other hand, is a more natural part of a certain synchronizing process.

Again, I am not saying this is bad. But this gives us a hint about where we might start our
surgery from when we start to lose control (due to our limited brain capacity, it's just a
matter of complexity).

Piling up similar yet parallel processes

Most of the code in this chapter is to handle the process of synchronizing data between a
client and a server. To get adapted to new features, we just kept adding new things into
methods, such as update and synchronize.

You might have already found that most outlines of the logic can be, and should be, shared
across multiple data types. But we didn't do that.

If we look into what's written, the duplication is actually minor judging from the aspect of
code texts. Taking the update method of the client, for example, the logic of every branch
seems to differ. If finding abstractions has not become your built-in reaction, you might just
stop there. Or if you are not a fan of long functions, you might refactor the code by splitting
it into small ones of the same class. That could make things a little better, but far from
enough.

Data stores that are tremendously simplified

In the implementation, we were playing heavily and directly with ideal in-memory stores. It
would be nice if we could have a wrapper for it, and make the real store interchangeable.

This might not be the case for this implementation as it is based on extremely ideal and
simplified assumptions and requirements. But adding a wrapper could be a way to provide
useful helpers.

[61]

The Challenge of Increasing Complexity

Getting things right

So let's get out of the illusion of comparing code one character at a time and try to find an
abstraction that can be applied to updating all of these data types. There are two key points
of this abstraction that have already been mentioned in the previous section:

e A change contains the information that can transform the value of an item from
one to another

e Multiple changes could be generated or applied to one data item during a single
synchronization

Now, starting from changes, let's think about what happens when an update method of a
client is called.

Finding abstraction

Take a closer look to the method update of client:

¢ For data of the 'value' type, first we create the change, including a new value,
and then update the change list to make the newly created change the only one.
After that, we update the value of data item.

e For data of the 'increment ' type, we add a change including the increment in
the change list; or if a change that has not be synchronized already exists, update
the increment of the existing change. And then, we update the value of the data
item.

e Finally, for data of the 'set ' type, we create a change reflecting the latest
operation. After adding the new change to the change list, we also remove
changes that are no longer necessary. Then we update the value of the data item.

Things are getting clear. Here is what's happening to these data types when update is
called:

1. Create new change.
2. Merge the new change to the change list.
3. Apply the new change to the data item.

Now it's even better. Every step is different for different data types, but different steps share
the same outline; what we need to do is to implement different strategies for different data

types.

[62]

The Challenge of Increasing Complexity

Implementing strategies

Doing all kind of changes with a single update function could be confusing. And before we
move on, let's split it into three different methods: update for normal values, increase for
incremental values, and addTo/removeFrom for sets.

Then we are going to create a new private method called applyChange, which will take the
change created by other methods and continue with step 2 and step 3. It accepts a strategy
object with two methods: append and apply:

interface ClientChangeStrategy<T extends ClientChange> {
append(list: ClientChangeList<T>, change: T): void;
apply (item: ClientDataltem<any>, change: T): void;

}

For a normal data item, the strategy object could be as follows:

let strategy: ClientChangeStrategy<ClientValueChange<any>> = {
append (list, change) {
list.changes = [change];
}I
apply (item, change) {
item.value = change.value;
}
}i

And for incremental data item, it takes a few more lines. First, the append method:

let changes = list.changes;
let lastChange = changes[changes.length];

if (!'lastChange || lastChange.synced) {
changes.push (change) ;
} else {

lastChange.increment += change.increment;

}

The append method is followed by the apply method:

if (item.value === undefined) {
item.value = change.increment;
} else {

item.value += change.increment;

[63]

The Challenge of Increasing Complexity

Now in the applyChange method, we need to take care of the creation of non-existing
items and change lists, and invoke different append and apply methods based on different
data types.

The same technique can be applied to other processes. Though detailed processes that apply
to the client and the server differ, we can still write them together as modules.

Wrapping stores

We are going to make a lightweight wrapper around plain in-memory store objects with the
ability to read and write, taking the server-side store as an example:

export class ServerStore {
private items: {
[id: string]: ServerDataltem<any>;
} = Object.create (null);

export class Server {
constructor (
public store: ServerStore
) {}
}

To fit our requirements, we need to implement get, set, and getA11 methods (or even
better, a £ind method with conditions) for ServerStore:

get<T, TExtra extends ServerDataltemExtra>(id: string):
ServerDataltem<T> & TExtra {
return hasOwnProperty.call (this.items, id) ?
this.items[id] as ServerDataltem<T> & TExtra : undefined;

set<T, TExtra extends ServerDataltemExtra> (
id: string,
item: ServerDataltem<T> & Textra

)y : void {
this.items[id] = item;

getAll<T, TExtra extends ServerDataltemExtra>():
(ServerDataltem<T> & TExtra) [] {
let items = this.items;
return Object
.keys (items)

[64]

The Challenge of Increasing Complexity

.map (id => items[id] as ServerDataltem<T> & TExtra);

}

You may have noticed from the interfaces and generics that I've also torn down
ServerDataItem into intersection types of the common part and extras.

Summary

In this chapter, we've been part of the evolution of a simplified yet reality-related project.
Starting with a simple code base that couldn't be wrong, we added a lot of features and
experienced the process of putting acceptable changes together and making the whole thing
a mess.

We were always trying to write readable code by either naming things nicely or adding
semantically necessary redundancies, but that won't help much as the complexity grows.

During the process, we've learned how offline synchronizing works. And with the help of
the most common design patterns, such as the Strategy Pattern, we managed to split the
project into small and controllable parts.

In the upcoming chapters, we'll catalog more useful design patterns with code examples in
TypeScript, and try to apply those design patterns to specific issues.

[65]

Creational Design Patterns

Creational design patterns in object-oriented programming are design patterns that are to
be applied during the instantiation of objects. In this chapter, we'll be talking about patterns

in this category.
Consider we are building a rocket, which has payload and one or more stages:

class Payload {
weight: number;

}

class Engine {
thrust: number;

}

class Stage {

engines: Enginel];

}

In old-fashioned JavaScript, there are two major approaches to building such a rocket:

¢ Constructor with new operator
¢ Factory function

For the first approach, things could be like this:

function Rocket () {
this.payload = {
name: 'cargo ship'

bi
this.stages = [
{
engines: [

/...

Creational Design Patterns

t
1;
t
var rocket = new Rocket ();

And for the second approach, it could be like this:

function buildRocket () {

var rocket = {};
rocket.payload = {
name: 'cargo ship'

}i
rocket.stages = [

{
thrusters: [
/]
]
}
17
return rocket;

}
var rocket = buildRocket ();

From a certain angle, they are doing pretty much the same thing, but semantically they
differ a lot. The constructor approach suggests a strong association between the building
process and the final product. The factory function, on the other hand, implies an interface
of its product and claims the ability to build such a product.

However, neither of the preceding implementations provides the flexibility to modularly
assemble rockets based on specific needs; this is what creational design patterns are about.

In this chapter, we'll cover the following creational patterns:

¢ Factory method: By using abstract methods of a factory instead of the constructor
to build instances, this allows subclasses to change what's built by implementing
or overriding these methods.

e Abstract factory: Defining the interface of compatible factories and their products.
Thus by changing the factory passed, we can change the family of built products.

¢ Builder: Defining the steps of building complex objects, and changing what's built
either by changing the sequence of steps, or using a different builder
implementation.

[67]

Creational Design Patterns

¢ Prototype: Creating objects by cloning parameterized prototypes. Thus by
replacing these prototypes, we may build different products.

¢ Singleton: Ensuring only one instance (under a certain scope) will be created.

It is interesting to see that even though the factory function approach to creating objects in
JavaScript looks primitive, it does have parts in common with some patterns we are going
to talk about (although applied to different scopes).

Factory method

Under some scenarios, a class cannot predict exactly what objects it will create, or its
subclasses may want to create more specified versions of these objects. Then, the Factory
Method Pattern can be applied.

The following picture shows the possible structure of the Factory Method Pattern applied to
creating rockets:

RocketFactory Rocket Payload Stage

+payload: Payload
+createRocket(): RocketFactory | | 4stages: Array<Stage> Z%

+createStages(): Array<Stage>
+createPayload(): Payload 4

Satellite FirstStage

FreightRocket

+Ipayload: Satellite A A
+/stages: Array<Stage> I N I A :

. o v

A O o o o ' 1 |secondStage

FreightRocketFactory

+createRocket(): FreightRocketFactory
+createStages(): Array<Stage>
+createPayload(): Satellite

A factory method is a method of a factory that builds objects. Take building rockets as an
example; a factory method could be a method that builds either the entire rocket or a single
component. One factory method might rely on other factory methods to build its target
object. For example, if we have a createRocket method under the Rocket class, it would
probably call factory methods like createStages and createPayload to get the necessary
components.

[68]

Creational Design Patterns

The Factory Method Pattern provides some flexibility upon reasonable complexity. It allows
extendable usage by implementing (or overriding) specific factory methods. Taking
createStages method, for example, we can create a one-stage rocket or a two-stage rocket
by providing different createstages method that return one or two stages respectively.

Participants
The participants of a typical Factory Method Pattern implementation include the following;:

e Product: Rocket

Define an abstract class or an interface of a rocket that will be created as
the product.

e Concrete product: FreightRocket

Implement a specific rocket product.

e Creator: RocketFactory

Define the optionally abstract factory class that creates products.

o Concrete creator: FreightRocketFactory

Implement or overrides specific factory methods to build products on demand.

Pattern scope

The Factory Method Pattern decouples Rocket from the constructor implementation and
makes it possible for subclasses of a factory to change what's built accordingly. A concrete
creator still cares about what exactly its components are and how they are built. But the
implementation or overriding usually focuses more on each component, rather than the
entire product.

Implementation

Let's begin with building a simple one-stage rocket that carries a 0-weight payload as the
default implementation:

class RocketFactory {

[69]

Creational Design Patterns

buildRocket () : Rocket { }
createPayload(): Payload { }
createStages () : Stage[] { }

}

We start with creating components. We will simply return a payload with 0 weight for the
factory method createPayload and one single stage with one single engine for the factory
method createStages:

createPayload(): Payload {
return new Payload(0);

}

createStages () : Stage[] {
let engine = new Engine (1000);
let stage = new Stage([engine]);
return [stagel;

}

After implementing methods to create the components of a rocket, we are going to put them
together with the factory method buildRocket:

buildRocket () : Rocket {
let rocket = new Rocket ();
let payload = this.createPayload();
let stages = this.createStages();
rocket.payload = payload;
rocket.stages = stages;

return rocket;

}

Now we have the blueprint of a simple rocket factory, yet with certain extensibilities. To
build a rocket (that does nothing so far), we just need to instantiate this very factory and call
its buildRocket method:

let rocketFactory = new RocketFactory();
let rocket = rocketFactory.buildRocket ();

Next, we are going to build two-stage freight rockets that send satellites into orbit. Thus,
there are some differences compared to the basic factory implementation.

First, we have a different payload, satellites, instead of a 0-weight placeholder:

class Satellite extends Payload {
constructor (
public id: number

) A

[70]

Creational Design Patterns

super (200) ;
}

Second, we now have two stages, probably with different specifications. The first stage is
going to have four engines:

class FirstStage extends Stage {
constructor () {
super ([
new Engine (1000),
new Engine (1000),
new Engine (1000)
new Engine (1000)
1)

’

}

While the second stage has only one:

class SecondStage extends Stage {
constructor () {
super ([
new Engine (1000)
1)

}

Now we have what this new freight rocket would look like in mind, let's extend the factory:

type FreightRocketStages = [FirstStage, SecondStage];

class FreightRocketFactory extends RocketFactory {
createPayload () : Satellite { }
createStages () : FreightRocketStages { }

Here we are using the type alias of a tuple to represent the stages sequence
of a freight rocket, namely the first and second stages. To find out more
about type aliases, please refer to https://www.typescriptlang.org/doc
s/handbook/advanced-types.html.

As we added the id property to Satellite, we might need a counter for each instance of
the factory, and then create every satellite with a unique ID:

nextSatelliteId = 0;

createPayload(): Satellite {

[71]

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html

Creational Design Patterns

return new Satellite(this.nextSatelliteId++);
t

Let's move on and implement the createStages method that builds first and second stage
of the rocket:

createStages () : FreightRocketStages {
return [
new FirstStage(),
new SecondStage ()
1i
}

Comparing to the original implementation, you may have noticed that we've automatically
decoupled specific stage building processes from assembling them into constructors of
different stages. It is also possible to apply another creational pattern for the initiation of
every stage if it helps.

Consequences

In the preceding implementation, the factory method buildRocket handles the outline of
the building steps. We were lucky to have the freight rocket in the same structure as the
very first rocket we had defined.

But that won't always happen. If we want to change the class of products (Rocket), we'll
have to override the entire buildRocket with everything else but the class name. This
looks frustrating but it can be solved, again, by decoupling the creation of a rocket instance
from the building process:

buildRocket () : Rocket {
let rocket = this.createRocket ();
let payload = this.createPayload();

let stages = this.createStages();
rocket.payload = payload;
rocket.stages = stages;

return rocket;

}

createRocket () : Rocket {
return new Rocket ();

}

Thus we can change the rocket class by overriding the createRocket method. However,
the return type of the buildRocket of a subclass (for example, FreightRocketFactory)

[72]

Creational Design Patterns

is still Rocket instead of something like FreightRocket. But as the object created is
actually an instance of FreightRocket, it is valid to cast the type by type assertion:

let rocket = FreightRocketFactory.buildRocket () as FreightRocket;

The trade-off is a little type safety, but that can be eliminated using generics. Unfortunately,
in TypeScript what you get from a generic type argument is just a type without an actual
value. This means that we may need another level of abstraction or other patterns that can
use the help of type inference to make sure of everything.

The former option would lead us to the Abstract Factory Pattern.

Type safety could be one reason to consider when choosing a pattern
but usually, it will not be decisive. Please note we are not trying to switch
a pattern for this single reason, but just exploring.

Abstract Factory

The Abstract Factory Pattern usually defines the interfaces of a collection of factory
methods, without specifying concrete products. This allows an entire factory to be
replaceable, in order to produce different products following the same production outline:

RocketFactory Client createRocket();
""" createPayload();
+createRocket(): Rocket +buildRocket() createStages();
+createPayload(): Payload
+createStages(). Array<Stage>
ExperimentalRocketFactory FreightRocketFactory
+createRocket(): ExperimentalRocket +createRocket(): FreightRocket
+createPayload(): ExperimentalPayload | | +createPayload(): Satellite
+createStages(): Array<Stage> +createStages(): FreightRocketStages
ExperimentalRocket FreightRocket

[73]

Creational Design Patterns

The details of the products (components) are omitted from the diagram, but do notice that
these products belong to two parallel families: ExperimentalRocket and
FreightRocket.

Different from the Factory Method Pattern, the Abstract Factory Pattern extracts another
part called client that take cares of shaping the outline of the building process. This makes
the factory part focused more on producing each component.

Participants

The participants of a typical Abstract Factory Pattern implementation include the following:

e Abstract factory: RocketFactory

Defines the industrial standards of a factory which provide interfaces for
manufacturing components or complex products.

Concrete factory: ExperimentalRocketFactory, FreightRocketFactory

Implements the interfaces defined by the abstract factory and builds concrete
products.

Abstract products: Rocket, Payload, Stage[]

Define the interfaces of the products the factories are going to build.

Concrete products: ExperimentalRocket/FreightRocket,
ExperimentalPayload/Satellite, and so on.

Presents actual products that are manufactured by a concrete factory.

Client:

Arranges the production process across factories (only if these factories
conform to industrial standards).

[74]

Creational Design Patterns

Pattern scope

Abstract Factory Pattern makes the abstraction on top of different concrete factories. At the
scope of a single factory or a single branch of factories, it just works like the Factory Method
Pattern. However, the highlight of this pattern is to make a whole family of products
interchangeable. A good example could be components of themes for a Ul implementation.

Implementation

In the Abstract Factory Pattern, it is the client interacting with a concrete factory for
building integral products. However, the concrete class of products is decoupled from the
client during design time, while the client cares only about what a factory and its products
look like instead of what exactly they are.

Let's start by simplifying related classes to interfaces:

interface Payload {
weight: number;

}

interface Stage {
engines: Enginel];

}

interface Rocket {
payload: Payload;
stages: Stagel[];
}

And of course the abstract factory itself is:

interface RocketFactory {

createRocket () : Rocket;
createPayload () : Payload;
createStages () : Stagell];

}

The building steps are abstracted from the factory and put into the client, but we still need
to implement it anyway:

class Client {
buildRocket (factory: RocketFactory): Rocket {

let rocket = factory.createRocket ();
rocket.payload = factory.createPayload();
rocket.stages = factory.createStages();

[75]

Creational Design Patterns

return rocket;

}

Now we have the same issue we previously had when we implemented the Factory Method
Pattern. As different concrete factories build different rockets, the class of the product
changes. However, now we have generics to the rescue.

First, we need a RocketFactory interface with a generic type parameter that describes a
concrete rocket class:

interface RocketFactory<T extends Rocket> {

createRocket () : T;
createPayload () : Payload;
createStages () : Stagel];

}
And second, update the buildRocket method of the client to support generic factories:

buildRocket<T extends Rocket> (
factory: RocketFactory<T>
) T {1}

Thus, with the help of the type system, we will have rocket type inferred based on the type
of a concrete factory, starting with ExperimentalRocket and
ExperimentalRocketFactory

class ExperimentalRocket implements Rocket { }

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> { }

If we call the buildRocket method of a client with an instance of
ExperimentalRocketFactory, the return type will automatically be
ExperimentalRocket:

let client = new Client ();
let factory = new ExperimentalRocketFactory();
let rocket = client.buildRocket (factory);

Before we can complete the implementation of the ExperimentalRocketFactory object,
we need to define concrete classes for the products of the family:

class ExperimentalPayload implements Payload {
weight: number;

}

[76]

Creational Design Patterns

class ExperimentalRocketStage implements Stage {
engines: Enginel];

class ExperimentalRocket implements Rocket {
payload: ExperimentalPayload;
stages: [ExperimentalRocketStage];

Trivial initializations of payload and stage are omitted for more compact
content. The same kinds of omission may be applied if they are not
necessary for this book.

And now we may define the factory methods of this concrete factory class:

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> {
createRocket () : ExperimentalRocket {
return new ExperimentalRocket ();
}
createPayload () : ExperimentalPayload {
return new ExperimentalPayload();
}
createStages () : [ExperimentalRocketStage] {
return [new ExperimentalRocketStage()];

}

Let's move on to another concrete factory that builds a freight rocket and products of its
family, starting with the rocket components:

class Satellite implements Payload {
constructor (
public id: number,
public weight: number

) {1}

class FreightRocketFirstStage implements Stage {
engines: Enginel];

class FreightRocketSecondStage implements Stage {
engines: Enginel];

type FreightRocketStages =

[771

Creational Design Patterns

[FreightRocketFirstStage, FreightRocketSecondStage];

Continue with the rocket itself:

class FreightRocket implements Rocket {
payload: Satellite;
stages: FreightRocketStages;

}

With the structures or classes of the freight rocket family defined, we are ready to
implement its factory:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
nextSatelliteId = 0;
createRocket () : FreightRocket {
return new FreightRocket () ;
}
createPayload(): Satellite {
return new Satellite(this.nextSatelliteId++, 100);
}
createStages () : FreightRocketStages {
return [
new FreightRocketFirstStage(),
new FreightRocketSecondStage ()

1;
}

Now we once again have two families of rockets and their factories, and we can use the
same client to build different rockets by passing different factories:

let client = new Client ();

let experimentalRocketFactory = new ExperimentalRocketFactory();
let freightRocketFactory = new FreightRocketFactory();

let experimentalRocket =
client.buildRocket (experimentalRocketFactory);

let freightRocket = client.buildRocket (freightRocketFactory) ;

[781

Creational Design Patterns

Consequences

The Abstract Factory Pattern makes it easy and smooth to change the entire family of
products. This is the direct benefit brought by the factory level abstraction. As a
consequence, it also brings other benefits, as well as some disadvantages at the same time.

On the one hand, it provides better compatibility within the products in a specific family.
As the products built by a single factory are usually meant to work together, we can assume
that they tend to cooperate more easily.

But on the other hand, it relies on a common outline of the building process, although for a
well-abstracted building process, this won't always be an issue. We can also parameterize
factory methods on both concrete factories and the client to make the process more flexible.

Of course, an abstract factory does not have to be a pure interface or an abstract class with
no methods implemented. An implementation in practice should be decided based on
detailed context.

Although the Abstract Factory Pattern and Factory Method Pattern have abstractions of
different levels, what they encapsulate are similar. For building a product with multiple
components, the factories split the products into components to gain flexibility. However, a
fixed family of products and their internal components may not always satisfy the
requirements, and thus we may consider the Builder Pattern as another option.

Builder

While Factory Patterns expose the internal components (such as the payload and stages of a
rocket), the Builder Pattern encapsulates them by exposing only the building steps and
provides the final products directly. At the same time, the Builder Pattern also encapsulates
the internal structures of a product. This makes it possible for a more flexible abstraction
and implementation of building complex objects.

[791

Creational Design Patterns

The Builder Pattern also introduces a new role called director, as shown in the following
diagram. It is quite like the client in the Abstract Factory Pattern, although it cares only
about build steps or pipelines:

RocketBuilder

- . teRocket();
+createRocket(): void Director| ggedapiyl(;(;deog)
+addPayload(): void addStages(cdum);

+addStages(count: number): void
+getRocket(): Rocket

A

FaclonBuilder Falcon

let rocket = getRocket();

------ > +payload: FreightCargo

+createRocket(): void +stages: Array<Stage>

+addPayload(): void
+addStages(count: number): void
+getRocket(): Falcon

Now the only constraint from RocketBuilder that applies to a product of its subclass is
the overall shape of a Rocket. This might not bring a lot of benefits with the Rocket
interface we previously defined, which exposes some details of the rocket that the clients
(by clients I mean those who want to send their satellites or other kinds of payload to space)
may not care about that much. For these clients, what they want to know might just be
which orbit the rocket is capable of sending their payloads to, rather than how many and
what stages this rocket has.

Participants

The participants of a typical Builder Pattern implementation include the following;:
¢ Builder: RocketBuilder
Defines the interface of a builder that builds products.

e Concrete builder: FalconBuilder

Implements methods that build parts of the products, and keeps track of the
current building state.

[80]

Creational Design Patterns

e Director

Defines the steps and collaborates with builders to build products.

¢ Final product: Falcon

The product built by a builder.

Pattern scope

The Builder Pattern has a similar scope to the Abstract Factory Pattern, which extracts
abstraction from a complete collection of operations that will finally initiate the products.
Compared to the Abstract Factory Pattern, a builder in the Builder Pattern focuses more on
the building steps and the association between those steps, while the Abstract Factory
Pattern puts that part into the clients and makes its factory focus on producing components.

Implementation

As now we are assuming that stages are not the concern of the clients who want to buy
rockets to carry their payloads, we can remove the stages property from the general
Rocket interface:

interface Rocket {
payload: Payload;
}

There is a rocket family called sounding rocket that sends probes to near space. And this
means we don't even need to have the concept of stages. SoundingRocket is going to have
only one engine property other than payload (which will be a Probe), and the only engine
will be a SolidRocketEngine:

class Probe implements Payload {
weight: number;

}
class SolidRocketEngine extends Engine { }

class SoundingRocket implements Rocket {
payload: Probe;
engine: SolidRocketEngine;

}

[81]

Creational Design Patterns

But still we need rockets to send satellites, which usually use LiquidRocketEngine:

class LiquidRocketEngine extends Engine {
fuellLevel = 0;
refuel (level: number): void {
this.fuellevel = level;

}

And we might want to have the corresponding LiquidRocketStage abstract class that
handles refuelling:

abstract class LiquidRocketStage implements Stage {
engines: LigquidRocketEnginel[] = [];
refuel (level = 100): void {
for (let engine of this.engines) {
engine.refuel (level);

}

Now we can update FreightRocketFirstStage and FreightRocketSecondStage as
subclasses of LiquidRocketStage:

class FreightRocketFirstStage extends LiquidRocketStage {
constructor (thrust: number) {

super () ;

let enginesNumber = 4;

let singleEngineThrust = thrust / enginesNumber;
for (let 1 = 0; i < enginesNumber; i++) {

let engine =
new LiquidRocketEngine (singleEngineThrust) ;
this.engines.push (engine);

class FreightRocketSecondStage extends LiquidRocketStage {
constructor (thrust: number) {
super () ;
this.engines.push(new LiquidRocketEngine (thrust));

}

The FreightRocket will remain the same as it was:

type FreightRocketStages =
[FreightRocketFirstStage, FreightRocketSecondStage];

[82]

Creational Design Patterns

class FreightRocket implements Rocket {
payload: Satellite;
stages = [] as FreightRocketStages;

}

And, of course, there is the builder. This time, we are going to use an abstract class that has
the builder partially implemented, with generics applied:

abstract class RocketBuilder<
TRocket extends Rocket,
TPayload extends Payload

> A
createRocket () : void { }
addPayload(payload: TPayload): void { }
addStages () : void { }
refuelRocket () : void { }
abstract get rocket(): TRocket;

There's actually no abstract method in this abstract class. One of the
reasons is that specific steps might be optional to certain builders. By
implementing no-op methods, the subclasses can just leave the steps they
don't care about empty.

Here is the implementation of the Director class:

class Director {

prepareRocket<
TRocket extends Rocket,
TPayload extends Payload

>(
builder: RocketBuilder<TRocket, TPayload>,
payload: TPayload

) : TRocket {
builder.createRocket () ;
builder.addPayload (payload) ;
builder.addStages () ;
builder.refuelRocket () ;
return builder.rocket;

Be cautious, without explicitly providing a building context, the builder
instance relies on the building pipelines being queued (either
synchronously or asynchronously). One way to avoid risk (especially with
asynchronous operations) is to initialize a builder instance every time you
prepare a rocket.

[83]

Creational Design Patterns

Now it's time to implement concrete builders, starting with SoundingRocketBuilder,
which builds a SoundingRocket with only one SolidRocketEngine:

class SoundingRocketBuilder
extends RocketBuilder<SoundingRocket, Probe> {

}

private buildingRocket: SoundingRocket;

createRocket () : void |
this.buildingRocket = new SoundingRocket ();
}
addPayload (probe: Probe): void {
this.buildingRocket.payload = probe;
}
addStages () : void {
let payload = this.buildingRocket.payload;
this.buildingRocket.engine =
new SolidRocketEngine (payload.weight);
}
get rocket (): SoundingRocket {
return this.buildingRocket;

There are several notable things in this implementation:

We've sensed a little about the context provided by a builder, and it could have a significant
influence on the result. For example, let's take a look at FreightRocketBuilder. It could
be similar to SoundingRocket if we don't take the addStages and refuel methods into

¢ The addstages method relies on the previously added payload to add an

engine with the correct thrust specification.

e The refuel method is not overridden (so it remains no-op) because a solid

rocket engine does not need to be refueled.

consideration:

class FreightRocketBuilder

extends RocketBuilder<FreightRocket,

private buildingRocket: FreightRocket;
createRocket () : void {
this.buildingRocket = new FreightRocket ();
}
addPayload(satellite: Satellite): void {
this.buildingRocket.payload = satellite;
}
get rocket (): FreightRocket {
return this.buildingRocket;

Satellite> {

[84]

Creational Design Patterns

}

Assume that a payload that weighs less than 1000 takes only one stage to send into space,
while payloads weighing more take two or more stages:

addStages () : void {
let rocket = this.buildingRocket;
let payload = rocket.payload;

let stages = rocket.stages;

stages[0] = new FreightRocketFirstStage (payload.weight * 4);

if (payload.weight >= FreightRocketBuilder.oneStageMax) {
stages[1l] = FreightRocketSecondStage (payload.weight);

static oneStageMax = 1000;

When it comes to refueling, we can even decide how much to refuel based on the weight of
the payloads:

refuel () : void {
let rocket = this.buildingRocket;
let payload = rocket.payload;
let stages = rocket.stages;
let oneMax = FreightRocketBuilder.oneStageMax;
let twoMax = FreightRocketBuilder.twoStagesMax;
let weight = payload.weight;
stages[0] .refuel (Math.min (weight, oneMax) / oneMax * 100);
if (weight >= oneMax) |
stages[1]
.refuel ((weight - oneMax) / (twoMax — oneMax) * 100);

static oneStageMax = 1000;
static twoStagesMax = 2000;

Now we can prepare different rockets ready to launch, with different builders:

let director = new Director();

let soundingRocketBuilder = new SoundingRocketBuilder();
let probe = new Probe();
let soundingRocket

= director.prepareRocket (soundingRocketBuilder, probe);

let freightRocketBuilder = new FreightRocketBuilder();
let satellite = new Satellite (0, 1200);

[85]

Creational Design Patterns

let freightRocket
= director.prepareRocket (freightRocketBuilder, satellite);

Consequences

As the Builder Pattern takes greater control of the product structures and how the building
steps influence each other, it provides the maximum flexibility by subclassing the builder
itself, without changing the director (which plays a similar role to a client in the Abstract
Factory Pattern).

Prototype

As JavaScript is a prototype-based programming language, you might be using prototype
related patterns all the time without knowing it.

We've talked about an example in the Abstract Factory Pattern, and part of the code is like
this:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
createRocket () : FreightRocket {
return new FreightRocket ();
t
t

Sometimes we may need to add a subclass just for changing the class name while
performing the same new operation. Instances of a single class usually share the same
methods and properties, so we can clone one existing instance for new instances to be
created. That is the concept of a prototype.

But in JavaScript, with the prototype concept built-in, new Constructor () does basically
what a clone method would do. So actually a constructor can play the role of a concrete
factory in some way:

interface Constructor<T> {
new (): T;

}

function createFancyObject<T> (constructor: Constructor<T>): T {
return new constructor();

}

[86]

lvww.allitebooks.cond

http://www.allitebooks.org

Creational Design Patterns

With this privilege, we can parameterize product or component classes as part of other
patterns and make creation even more flexible.

There is something that could easily be ignored when talking about the Prototype Pattern in
JavaScript: cloning with the state. With the class syntax sugar introduced in ES6, which
hides the prototype modifications, we may occasionally forget that we can actually modify
prototypes directly:

class Base {
state: number;

}

let base = new Base();
base.state = 0;

class Derived extends Base { }
Derived.prototype = base;

let derived = new Derived();

Now, the derived object will keep the state of the base object. This could be useful when
you want to create copies of a specific instance, but keep in mind that properties in a
prototype of these copies are not the own properties of these cloned objects.

Singleton

There are scenarios in which only one instance of the specific class should ever exist, and
that leads to Singleton Pattern.

Basic implementations

The simplest singleton in JavaScript is an object literal; it provides a quick and cheap way to
create a unique object:

const singleton = {
foo(): void {
console.log('bar');
}
}i

[87]

Creational Design Patterns

But sometimes we might want private variables:

const singleton = (() => {
let bar = 'bar';
return {
foo(): void {
console.log(bar);

bi
IDEON

Or we want to take the advantage of an anonymous constructor function or class expression
in ES6:

const singleton = new class {
private _bar = 'bar';
foo(): void {

console.log(this._bar);
PO

Remember that the private modifier only has an effect at compile time,

and simply disappears after being compiled to JavaScript (although of
course its accessibility will be keptin .d.ts).

However, it is possible to have the requirements for creating new instances of “singletons”
sometimes. Thus a normal class will still be helpful:

class Singleton {
bar = 'bar';
foo(): void {
console.log(bar);
}

private static _default: Singleton;

static get default(): Singleton {
if (!Singleton._default) {
Singleton._default = new Singleton();
}

return Singleton._default;
}
}

Another benefit brought by this approach is lazy initialization: the object only gets
initialized when it gets accessed the first time.

[88]

Creational Design Patterns

Conditional singletons

Sometimes we might want to get “singletons” based on certain conditions. For example,
every country usually has only one capital city, thus a capital city could be treated as a
singleton under the scope of the specific country.

The condition could also be the result of context rather than explicit arguments. Assuming
we have a class Environment and its derived classes, WindowsEnvironment and
UnixEnvironment, we would like to access the correct environment singleton across
platforms by using Environment .default and apparently, a selection could be made by
the default getter.

For more complex scenarios, we might want a registration-based implementation to make it
extendable.

Summary

In this chapter, we've talked about several important creational design patterns including
the Factory Method, Abstract Factory, Builder, Prototype, and Singleton.

Starting with the Factory Method Pattern, which provides flexibility with limited
complexity, we also explored the Abstract Factory Pattern, the Builder Pattern and the
Prototype Pattern, which share similar levels of abstraction but focus on different aspects.
These patterns have more flexibility than the Factory Method Pattern, but are more complex
at the same time. With the knowledge of the idea behind each of the patterns, we should be
able to choose and apply a pattern accordingly.

While comparing the differences, we also found many things in common between different
creational patterns. These patterns are unlikely to be isolated from others and some of them
can even collaborate with or complete each other.

In the next chapter, we'll continue to discuss structural patterns that help to form large
objects with complex structures.

[89]

Structural Design Patterns

While creational patterns play the part of flexibly creating objects, structural patterns, on the
other hand, are patterns about composing objects. In this chapter, we are going to talk about
structural patterns that fit different scenarios.

If we take a closer look at structural patterns, they can be divided into structural class
patterns and structural object patterns. Structural class patterns are patterns that play with
“interested parties” themselves, while structural object patterns are patterns that weave
pieces together (like Composite Pattern). These two kinds of structural patterns
complement each other to some degree.

Here are the patterns we'll walk through in this chapter:

Composite: Builds tree-like structures using primitive and composite objects. A
good example would be the DOM tree that forms a complete page.

Decorator: Adds functionality to classes or objects dynamically.

Adapter: Provides a general interface and work with different adaptees by
implementing different concrete adapters. Consider providing different database
choices for a single content management system.

Bridge: Decouples the abstraction from its implementation, and make both of
them interchangeable.

Facade: Provides a simplified interface for the combination of complex
subsystems.

Flyweight: Shares stateless objects that are being used many times to improve
memory efficiency and performance.

Proxy: Acts as the surrogate that takes extra responsibilities when accessing
objects it manages.

Structural Design Patterns

Composite Pattern

Objects under the same class could vary from their properties or even specific subclasses,
but a complex object can have more than just normal properties. Taking DOM elements, for
example, all the elements are instances of class Node. These nodes form tree structures to
represent different pages, but every node in these trees is complete and uniform compared
to the node at the root:

<html>
<head>
<title>TypeScript</title>
</head>
<body>
<h1>TypeScript</hl>

</body>
</html>

The preceding HTML represents a DOM structure like this:

HTMLHtmIElement

|HTMLHeadEknwnt| |HTMLBodyﬂemenq
|HTMLTMeHemenq |HTMLHeaMngHement|| HTMLImageElement

All of the preceding objects are instances of Node, they implement the interface of a
component in Composite Pattern. Some of these nodes like HTML elements (except for
HTMLImageElement) in this example have child nodes (components) while others don't.

[91]

Structural Design Patterns

Participants

The participants of Composite Pattern implementation include:
¢ Component: Node

Defines the interface and implement the default behavior for objects of the
composite. It should also include an interface to access and manage the child
components of an instance, and optionally a reference to its parent.

o Composite: Includes some HTML elements, like HTMLHeadElement and
HTMLBodyElement

Stores child components and implements related operations, and of course its
own behaviors.

o Leaf: TextNode, HTMLImageElement

Defines behaviors of a primitive component.
e Client:

Manipulates the composite and its components.

Pattern scope

Composite Pattern applies when objects can and should be abstracted recursively as
components that form tree structures. Usually, it would be a natural choice when a certain
structure needs to be formed as a tree, such as trees of view components, abstract syntax
trees, or trees that represent file structures.

Implementation

We are going to create a composite that represents simple file structures and has limited
kinds of components.

First of all, let's import related node modules:

import * as Path from 'path';
import * as FS from 'fs';

[92]

Structural Design Patterns

Module path and f£s are built-in modules of Node.js, please refer to
Node.js documentation for more information: https://nodejs.org/api/.

It is my personal preference to have the first letter of a namespace (if it's
not a function at the same time) in uppercase, which reduces the chance of
conflicts with local variables. But a more popular naming style for
namespace in JavaScript does not.

Now we need to make abstraction of the components, say FileSystemObject:

abstract class FileSystemObject {
constructor (
public path: string,
public parent?: FileSystemObject
) {1}

get basename () : string {
return Path.basename (this.path);
}
}

We are using abstract class because we are not expecting to use FileSystemObject
directly. An optional parent property is defined to allow us to visit the upper component
of a specific object. And the basename property is added as a helper for getting the
basename of the path.

The FileSystemObject is expected to have subclasses, FolderObject and FileObject.
For FolderObject, which is a composite that may contain other folders and files, we are
going to add an items property (getter) that returns other FileSystemObject it contains:

class FolderObject extends FileSystemObject {
items: FileSystemObject([];

constructor (path: string, parent?: FileSystemObject) {
super (path, parent);
}
}

We can initialize the items property in the constructor with actual files and folders
existing at given path:

this.items = FS
.readdirSync (this.path)
.map (path => {

[93]

https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/

Structural Design Patterns

let stats = FS.statSync(path);

if (stats.isFile()) |
return new FileObject (path, this);
} else if (stats.isDirectory()) A
return new FolderObject (path, this);
} else {
throw new Error ('Not supported');

1)

You may have noticed we are forming items with different kinds of objects, and we are
also passing this as the parent of newly created child components.

And for FileObject, we'll add a simple reada1l method that reads all bytes of the file:

class FileObject extends FileSystemObject {
readAll () : Buffer {
return FS.readFileSync(this.path);
}
}

Currently, we are reading the child items inside a folder from the actual filesystem when a
folder object gets initiated. This might not be necessary if we want to access this structure
on demand. We may actually create a getter that calls readdir only when it's accessed,
thus the object would act like a proxy to the real filesystem.

Consequences

Both the primitive object and composite object in Composite Pattern share the component
interface, which makes it easy for developers to build a composite structure with fewer
things to remember.

It also enables the possibility of using markup languages like XML and HTML to represent
a really complex object with extreme flexibility. Composite Pattern can also make the
rendering easier by having components rendered recursively.

As most components are compatible with having child components or being child
components of their parents themselves, we can easily create new components that work
great with existing ones.

[94]

Structural Design Patterns

Decorator Pattern

Decorator Pattern adds new functionality to an object dynamically, usually without
compromising the original features. The word decorator in Decorator Pattern does share
something with the word decorator in the ES-next decorator syntax, but they are not exactly
the same. Classical Decorator Pattern as a phrase would differ even more.

The classical Decorator Pattern works with a composite, and the brief idea is to create
decorators as components that do the decorating work. As composite objects are usually
processed recursively, the decorator components would get processed automatically. So it
becomes your choice to decide what it does.

The inheritance hierarchy could be like the following structure shown:

UlComponent

1

TextComponent Decorator

+constructor(component)

7

ColorDecorator FontDecorator

+constructor(component, color) +constructor(component, font)

The decorators are applied recursively like this:

ColorDecorator

+component

FontDecorator

+component

TextComponent

[95]

Structural Design Patterns

There are two prerequisites for the decorators to work correctly: the awareness of context or
object that a decorator is decorating, and the ability of the decorators being applied. The
Composite Pattern can easily create structures that satisfy those two prerequisites:

¢ The decorator knows what it decorates as the component property
¢ The decorator gets applied when it is rendered recursively

However, it doesn't really need to take a structure like a composite to gain the benefits from
Decorator Pattern in JavaScript. As JavaScript is a dynamic language, if you can get your
decorators called, you may add whatever you want to an object.

Taking method 1og under console object as an example, if we want a timestamp before
every log, we can simply replace the 1og function with a wrapper that has the timestamp
prefixed:

const _log = console.log;

console.log = function () {
let timestamp = "~ [${new Date () .toTimeString () }]" ;
return _log.apply(this, [timestamp, ...arguments]);

Yi

Certainly, this example has little to do with the classical Decorator Pattern, but it enables a
different way for this pattern to be done in JavaScript. Especially with the help of new
decorator syntax:

class Target {

@decorator
method () {
//

}

TypeScript provides the decorator syntax transformation as an
experimental feature. To learn more about decorator syntax, please check
Outthefoﬂowdnglhik:http://www.typescriptlang.org/docs/handbook
/decorators.html.

Participants

The participants of classical Decorator Pattern implementation include:

¢ Component: UIComponent

Defines the interface of the objects that can be decorated.

[96]

http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.ht<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>