
www.allitebooks.com

http://www.allitebooks.org

TypeScript Design Patterns

Boost your development efficiency by learning about
design patterns in TypeScript

Vilic Vane

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

TypeScript Design Patterns

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2016

Production reference: 1240816

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78528-083-2

www.packtpub.com

www.allitebooks.com

http://www.packtpub.com
http://www.allitebooks.org

Credits

Author

Vilic Vane

Copy Editor

Safis Editing

Reviewer

Wander Wang

Project Coordinator

 Suzanne Coutinho

Commissioning Editor

Kunal Parikh

Proofreader

Safis Editing

Acquisition Editor

Denim Pinto

Indexer

Rekha Nair

Content Development Editor

Nikhil Borkar

Graphics

Jason Monteiro

Technical Editor

Hussain Kanchwala

Production Coordinator

Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Author
Vilic Vane is a JavaScript engineer with over 8 years of experience in web development. He
started following the TypeScript project since it went public, and he’s also a contributor of
the project. He is now working at Ruff, a startup company building an IoT platform that
runs JavaScript on embedded devices.

I want to thank the editors and reviewers, including Wander Wang, for their efforts that made this
book possible. I also want to thank my girlfriend, Emi, for not pissing me off when she came for me
from her school 1,400 km away but could only have a takeout with me in my apartment due to my
always-about-to-start-writing condition.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer
Wander Wang is working at Egret Technology Co., Ltd. as the chief architect of Egret
Engine. He also works as a part-time teacher in the School of Software Engineering at
Beijing University of Technology. Wang has 7 years of experience in developing web and
mobile games, and he currently focuses on the language research and extension of
TypeScript. Egret Engine is a popular HTML5 game engine written in TypeScript. There are
more than 80,000 developers worldwide who build their web or mobile games on the top of
Egret Engine. Wang is also interested in technologies such as React, React-Native, and
Electron, and so on.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com
eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s : / / w w w 2 . p a c k t p u b . c o m / b o o k s / s u b s c r i p t i o n / p a c k t l i b

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents
Chapter 1: Tools and Frameworks 7

Installing the prerequisites 7
Installing Node.js 7
Installing TypeScript compiler 8

Choosing a handy editor 9
Visual Studio Code 9

Configuring Visual Studio Code 10
Opening a folder as a workspace 11
Configuring a minimum build task 12

Sublime Text with TypeScript plugin 13
Installing Package Control 14
Installing the TypeScript plugin 14

Other editor or IDE options 14
Atom with the TypeScript plugin 15
Visual Studio 15
WebStorm 16

Getting your hands on the workflow 16
Configuring a TypeScript project 16

Introduction to tsconfig.json 17
Compiler options 18

target 18
module 18
declaration 18
sourceMap 19
jsx 19
noEmitOnError 19
noEmitHelpers 19
noImplicitAny 19
experimentalDecorators* 19
emitDecoratorMetadata* 20
outDir 20
outFile 20
rootDir 20
preserveConstEnums 21
strictNullChecks 21
stripInternal* 21
isolatedModules 21

Adding source map support 21
Downloading declarations using typings 22

Installing typings 22

www.allitebooks.com

http://www.allitebooks.org

[ii]

Downloading declaration files 23
Option “save” 24

Testing with Mocha and Istanbul 24
Mocha and Chai 24

Writing tests in JavaScript 25
Writing tests in TypeScript 25

Getting coverage information with Istanbul 27
Testing in real browsers with Karma 28

Creating a browser project 28
Installing Karma 30
Configuring and starting Karma 30

Integrating commands with npm 31
Why not other fancy build tools? 31

Summary 32

Chapter 2: The Challenge of Increasing Complexity 33

Implementing the basics 34
Creating the code base 34
Defining the initial structure of the data to be synchronized 35
Getting data by comparing timestamps 35
Two-way synchronizing 36
Things that went wrong while implementing the basics 37

Passing a data store from the server to the client does not make sense 37
Making the relationships clear 38

Growing features 39
Synchronizing multiple items 39

Simply replacing data type with an array 39
Server-centered synchronization 39

Synchronizing from the server to the client 40
Synchronizing from client to server 44

Synchronizing multiple types of data 49
Supporting multiple clients with incremental data 50

Updating the client side 51
Updating server side 55

Supporting more conflict merging 57
New data structures 57
Updating client side 58
Updating the server side 60

Things that go wrong while implementing everything 60
Piling up similar yet parallel processes 61
Data stores that are tremendously simplified 61

Getting things right 62
Finding abstraction 62
Implementing strategies 63

www.allitebooks.com

http://www.allitebooks.org

[iii]

Wrapping stores 64
Summary 65

Chapter 3: Creational Design Patterns 66

Factory method 68
Participants 69
Pattern scope 69
Implementation 69
Consequences 72

Abstract Factory 73
Participants 74
Pattern scope 75
Implementation 75
Consequences 79

Builder 79
Participants 80
Pattern scope 81
Implementation 81
Consequences 86

Prototype 86
Singleton 87

Basic implementations 87
Conditional singletons 89

Summary 89

Chapter 4: Structural Design Patterns 90

Composite Pattern 90
Participants 92
Pattern scope 92
Implementation 92
Consequences 94

Decorator Pattern 95
Participants 96
Pattern scope 97
Implementation 97

Classical decorators 97
Decorators with ES-next syntax 100

Consequences 101
Adapter Pattern 101

Participants 103
Pattern scope 103

www.allitebooks.com

http://www.allitebooks.org

[iv]

Implementation 103
Consequences 106

Bridge Pattern 106
Participants 106
Pattern scope 107
Implementation 107
Consequences 109

Façade Pattern 110
Participants 111
Pattern scope 112
Implementation 112
Consequences 114

Flyweight Pattern 114
Participants 115
Pattern scope 116
Implementation 116
Consequences 118

Proxy Pattern 118
Participants 119
Pattern scope 120
Implementation 120
Consequences 123

Summary 123

Chapter 5: Behavioral Design Patterns 124

Chain of Responsibility Pattern 124
Participants 127
Pattern scope 128
Implementation 128
Consequences 130

Command Pattern 130
Participants 132
Pattern scope 132
Implementation 133
Consequences 134

Memento Pattern 135
Participants 136
Pattern scope 136
Implementation 136
Consequences 138

[v]

Iterator Pattern 138
Participants 139
Pattern scope 139
Implementation 139

Simple array iterator 140
ES6 iterator 141

Consequences 143
Mediator Pattern 143

Participants 144
Pattern scope 145
Implementation 145
Consequences 147

Summary 148

Chapter 6: Behavioral Design Patterns: Continuous 149

Strategy Pattern 150
Participants 151
Pattern scope 152
Implementation 152
Consequences 154

State Pattern 154
Participants 155
Pattern scope 156
Implementation 156
Consequences 158

Template Method Pattern 158
Participants 159
Pattern scope 160
Implementation 160
Consequences 162

Observer Pattern 162
Participants 166
Pattern scope 167
Implementation 167
Consequences 169

Visitor Pattern 170
Participants 172
Pattern scope 173
Implementation 173
Consequences 176

[vi]

Summary 176

Chapter 7: Patterns and Architectures in JavaScript and TypeScript 178

Promise-based web architecture 178
Promisifying existing modules or libraries 180
Views and controllers in Express 181
Abstraction of responses 184
Abstraction of permissions 186
Expected errors 187

Defining and throwing expected errors 188
Transforming errors 188

Modularizing project 189
Asynchronous patterns 191

Writing predictable code 191
Asynchronous creational patterns 193
Asynchronous middleware and hooks 194
Event-based stream parser 195

Summary 197

Chapter 8: SOLID Principles 198

Single responsibility principle 199
Example 199
Choosing an axis 200

Open-closed principle 201
Example 201
Abstraction in JavaScript and TypeScript 202
Refactor earlier 203

Liskov substitution principle 203
Example 204
The constraints of substitution 205

Interface segregation principle 205
Example 205
Proper granularity 207

Dependency inversion principle 207
Example 207
Separating layers 207

Summary 208

Chapter 9: The Road to Enterprise Application 209

Creating an application 210
Decision between SPA and “normal” web applications 210

[vii]

Taking team collaboration into consideration 211
Building and testing projects 211

Static assets packaging with webpack 212
Introduction to webpack 212
Bundling JavaScript 212
Loading TypeScript 214
Splitting code 216
Loading other static assets 217

Adding TSLint to projects 217
Integrating webpack and tslint command with npm scripts 218

Version control 218
Git flow 219

Main branches 220
Supporting branches 220

Feature branches 220
Release branches 221
Hotfix branches 222

Summary of Git flow 222
Pull request based code review 223

Configuring branch permissions 223
Comments and modifications before merge 223

Testing before commits 224
Git hooks 224
Adding pre-commit hook automatically 224

Continuous integration 225
Connecting GitHub repository with Travis-CI 225

Deployment automation 226
Passive deployment based on Git server side hooks 227
Proactive deployment based on timers or notifications 228

Summary 228

Index 230

Preface
It wasn’t a long time ago that many JavaScript engineers or, most of the time, web frontend
engineers, were still focusing on solving detailed technical issues, such as how to lay out
specific content cross-browsers and how to send requests cross-domains.

At that time, a good web frontend engineer was usually expected to have notable
experience on how detailed features can be implemented with existing APIs. Only a few
people cared about how to write application-scale JavaScript because the interaction on a
web page was really simple and no one wrote ASP in JavaScript.

However, the situation has changed tremendously. JavaScript has become the only
language that runs everywhere, cross-platform and cross-device. In the main battlefield,
interactions on the Web become more and more complex, and people are moving business
logic from the backend to the frontend. With the growth of the Node.js community,
JavaScript is playing a more and more important roles in our life.

I am currently working for an IoT company called Ruff that builds a platform for JavaScript
to write applications run on embedded devices. You might have seen a fake book cover in
the title of Writing Device Drivers in JavaScript, but that is actually a part of what we do.

The boom of JavaScript, however, makes people realize that the language itself might not be
powerful enough for applications on a larger scale. While we enjoy the flexibility of the
language, we suffer from its lack of static-type information; for instance, consider the
following:

No static type checking: We have to rely on debugging or tests to get rid of
simple errors that could be eliminated when the code is written.
Refactoring is a pain: Basically, what the IDEs or editors can do about JavaScript
code is renaming local variables or exported module functions at best.
Understanding code is difficult: When you grasp a piece of code, you might
have to look around and manually search for references just to figure out which
properties an object has and what types of property they are. This happens to our
own code as well.

Compared to tools such as ESLint and even Flow, which only partially solve the problems,
TypeScript does a really good job while it is still sticking to the ECMAScript standard.

TypeScript is indeed an awesome tool for JavaScript. Unfortunately, intelligence is still
required to write actually robust, maintainable, and reusable code. But wait, doesn’t the

Preface

[2]

intelligence part involve the true value of our work?

We might all have had trouble finding clues to mysterious bugs, or squeezed our head
thinking about how we can add new features to the existing code base. Some of us, with
experience and intuition built over the years, may directly come up with a design that’s not
bad. For these people, getting through the common design patterns can help gain
knowledge of what people have already catalogued over years in the industry or be better
understood when discussing software designs with others. For people who have less
experience, learning common design patterns may be a more straightforward approach to
creating code that’s beautifully designed.

What this book covers
Chapter 1, Tools and Frameworks, provides a brief introduction to tools and frameworks that
will be used through this book, including installing a TypeScript compiler, preparing an
editor, and a basic workflow.

Chapter 2, The Challenge of Increasing Complexity, starts with a simple server-client
synchronizing implementation; we then expand its features and see how things can gain
undesired complexity and how that complexity can be reduced.

Chapter 3, Creational Design Patterns, catalogs five common creational design patterns, the
Factory Method, Abstract Factory, Builder, Prototype, and Singleton patterns.

Chapter 4, Structural Design Patterns, catalogs seven common structural design patterns, the
Composite, Decorator, Adapter, Bridge, Façade, Flyweight, and Proxy patterns.

Chapter 5, Behavioral Design Patterns, catalogs five common behavioral design patterns, the
Chain of Responsibility, Command, Memento, Iterator, and Mediator patterns.

Chapter 6, Behavioral Design Patterns: Continuous, catalogs another four common behavioral
design patterns, the Strategy, State, Template Method, Observer, and Visitor patterns.

Chapter 7, Patterns and Architectures in JavaScript and TypeScript, takes a look at the patterns
and architectures that closely relate to the language (JavaScript or TypeScript) and its
application, including asynchronous programming, module organization, error handling,
permission abstraction, and so on.

Chapter 8, SOLID Principles, explains the well-known SOLID principles and how they can
benefit a project and keep it healthy over time.

Chapter 9, The Road to Enterprise Application, guides readers to build the complete workflow
of an application that is ready to scale, including testing and continuous integration.

Preface

[3]

What you need for this book
It is possible to read through this entire book without installing anything. But it is
recommended that you have a handy editor and TypeScript compiler installed to get your
hands dirty. Please refer to Chapter 1, Tools and Frameworks, for the detailed preparation of
tools, including Node.js, a TypeScript compiler, declaration manager, and a nice editor or
IDE.

Though this book does not require the reader to have a knowledge of design patterns, it's
not a book that teaches basic TypeScript syntax. If you are not yet familiar with TypeScript,
please walk through the TypeScript Handbook before reading Chapter 2, The Challenge of
Increasing Complexity.

Who this book is for
If you are a TypeScript developer, this book is for you. No knowledge of design patterns is
required to read this book.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Save the
following code to file test.ts."

A block of code is set as follows:

require('chai').should();

Any command-line input or output is written as follows:

$ tsc test.ts

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Without the necessary
declaration files, the compiler would complain Cannot find module express."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-
mail feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p : / / w w w . p

a c k t p u b . c o m. If you purchased this book elsewhere, you can visit h t t p : / / w w w . p a c k t p u b . c

o m / s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s : / / g i t h u b . c o m / P a c k t P u b l

i s h i n g / T y p e S c r i p t - D e s i g n - P a t t e r n s /. We also have other code bundles from our rich
catalog of books and videos available at h t t p s : / / g i t h u b . c o m / P a c k t P u b l i s h i n g /. Check
them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p : / / w w w . p a c k t p u b . c o m / s u b m i t - e r r a t a, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s : / / w w w . p a c k t p u b . c o m / b o o k s / c o n t e n

t / s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/TypeScript-Design-Patterns/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Tools and Frameworks

We could always use the help of real code to explain the design patterns we'll be discussing.
In this chapter, we'll have a brief introduction to the tools and frameworks that you might
need if you want to have some practice with complete working implementations of the
contents of this book.

In this chapter, we'll cover the following topics:

Installing Node.js and TypeScript compiler
Popular editors or IDEs for TypeScript
Configuring a TypeScript project
A basic workflow that you might need to play with your own implementations of
the design patterns in this book

Installing the prerequisites
The contents of this chapter are expected to work on all major and up-to-date desktop
operating systems, including Windows, OS X, and Linux.

As Node.js is widely used as a runtime for server applications as well as frontend build
tools, we are going to make it the main playground of code in this book.

TypeScript compiler, on the other hand, is the tool that compiles TypeScript source files into
plain JavaScript. It's available on multiple platforms and runtimes, and in this book we'll be
using the Node.js version.

Tools and Frameworks

[8]

Installing Node.js
Installing Node.js should be easy enough. But there's something we could do to minimize
incompatibility over time and across different environments:

Version: We'll be using Node.js 6 with npm 3 built-in in this book. (The major
version of Node.js may increase rapidly over time, but we can expect minimum
breaking changes directly related to our contents. Feel free to try a newer version
if it's available.)
Path: If you are installing Node.js without a package manager, make sure the
environment variable PATH is properly configured.

Open a console (a command prompt or terminal, depending on your operating system) and
make sure Node.js as well as the built-in package manager npm is working:

$ node -v
6.x.x
$ npm -v
3.x.x

Installing TypeScript compiler
TypeScript compiler for Node.js is published as an npm package with command line
interface. To install the compiler, we can simply use the npm install command:

$ npm install typescript -g

Option -g means a global installation, so that tsc will be available as a command. Now
let's make sure the compiler works:

$ tsc -v
Version 2.x.x

You may get a rough list of the options your TypeScript compiler provides
with switch -h. Taking a look into these options may help you discover
some useful features.

Tools and Frameworks

[9]

Before choosing an editor, let's print out the legendary phrase:

Save the following code to file test.ts:1.

 function hello(name: string): void {
 console.log(`hello, ${name}!`);
 }

 hello('world');

Change the working directory of your console to the folder containing the created2.
file, and compile it with tsc:

 $ tsc test.ts

With luck, you should have the compiled JavaScript file as test.js. Execute it3.
with Node.js to get the ceremony done:

 $ node test.js
 hello, world!

Here we go, on the road to retire your CTO.

Choosing a handy editor
A compiler without a good editor won't be enough (if you are not a believer of Notepad).
Thanks to the efforts made by the TypeScript community, there are plenty of great editors
and IDEs ready for TypeScript development.

However, the choice of an editor could be much about personal preferences. In this section,
we'll talk about the installation and configuration of Visual Studio Code and Sublime Text.
But other popular editors or IDEs for TypeScript will also be listed with brief introductions.

Visual Studio Code
Visual Studio Code is a free lightweight editor written in TypeScript. And it's an open
source and cross-platform editor that already has TypeScript support built-in.

You can download Visual Studio Code from h t t p s : / / c o d e . v i s u a l s t u d i o . c o m / and the
installation will probably take no more than 1 minute.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

[10]

The following screenshot shows the debugging interface of Visual Studio Code with a
TypeScript source file:

Configuring Visual Studio Code
As Code already has TypeScript support built-in, extra configurations are actually not
required. But if the version of TypeScript compiler you use to compile the source code
differs from what Code has built-in, it could result in unconformity between editing and
compiling.

Tools and Frameworks

[11]

To stay away from the undesired issues this would bring, we need to configure TypeScript
SDK used by Visual Studio Code manually:

Press F1, type Open User Settings , and enter. Visual Studio Code will open1.
the settings JSON file by the side of a read-only JSON file containing all the
default settings.
Add the field typescript.tsdk with the path of the lib folder under the2.
TypeScript package we previously installed:

1. Execute the command npm root -g in your console to get the root of
global Node.js modules.

2. Append the root path with /typescript/lib as the SDK path.

You can also have a TypeScript package installed locally with the project,
and use the local TypeScript lib path for Visual Studio Code. (You will
need to use the locally installed version for compiling as well.)

Opening a folder as a workspace
Visual Studio Code is a file- and folder-based editor, which means you can open a file or a
folder and start work.

But you still need to properly configure the project to take the best advantage of Code. For
TypeScript, the project file is tsconfig.json, which contains the description of source files
and compiler options. Know little about tsconfig.json? Don't worry, we'll come to that
later.

Here are some features of Visual Studio Code you might be interested in:

Tasks: Basic task integration. You can build your project without leaving the
editor.
Debugging: Node.js debugging with source map support, which means you can
debug Node.js applications written in TypeScript.
Git: Basic Git integration. This makes comparing and committing changes easier.

Tools and Frameworks

[12]

Configuring a minimum build task
The default key binding for a build task is Ctrl + Shift + B or cmd + Shift + B on OS X. By
pressing these keys, you will get a prompt notifying you that no task runner has been
configured. Click Configure Task Runner and then select a TypeScript build task template
(either with or without the watch mode enabled). A tasks.json file under the .vscode
folder will be created automatically with content similar to the following:

{
 "version": "0.1.0",
 "command": "tsc",
 "isShellCommand": true,
 "args": ["-w", "-p", "."],
 "showOutput": "silent",
 "isWatching": true,
 "problemMatcher": "$tsc-watch"
}

Now create a test.ts file with some hello-world code and run the build task again. You
can either press the shortcut we mentioned before or press Ctrl/Cmd + P, type task tsc ,
and enter.

If you were doing things correctly, you should be seeing the output test.js by the side of
test.ts.

There are some useful configurations for tasking that can't be covered. You may find more
information on the website of Visual Studio Code: h t t p s : / / c o d e . v i s u a l s t u d i o . c o m /.

From my perspective, Visual Studio Code delivers the best TypeScript development
experience in the class of code editors. But if you are not a fan of it, TypeScript is also
available with official support for Sublime Text.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

[13]

Sublime Text with TypeScript plugin
Sublime Text is another popular lightweight editor around the field with amazing
performance.

The following image shows how TypeScript IntelliSense works in Sublime Text:

The TypeScript team has officially built a plugin for Sublime Text (version 3 preferred), and
you can find a detailed introduction, including useful shortcuts, in their GitHub repository
here: h t t p s : / / g i t h u b . c o m / M i c r o s o f t / T y p e S c r i p t - S u b l i m e - P l u g i n.

There are still some issues with the TypeScript plugin for Sublime Text. It
would be nice to know about them before you start writing TypeScript
with Sublime Text.

https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin

Tools and Frameworks

[14]

Installing Package Control
Package Control is de facto package manager for Sublime Text, with which we'll install the
TypeScript plugin.

If you don't have Package Control installed, perform the following steps:

Click Preferences > Browse Packages…, it opens the Sublime Text packages1.
folder.
Browse up to the parent folder and then into the Install Packages folder, and2.
download the file below into this folder: h t t p s : / / p a c k a g e c o n t r o l . i o / P a c k a g e %
2 C o n t r o l . s u b l i m e - p a c k a g e

Restart Sublime Text and you should now have a working package manager.3.

Now we are only one step away from IntelliSense and refactoring with Sublime Text.

Installing the TypeScript plugin
With the help of Package Control, it's easy to install a plugin:

Open the Sublime Text editor; press Ctrl + Shift + P for Windows and Linux or1.
Cmd + Shift + P for OS X.
Type Install Package in the command palette, select Package Control: Install2.
Package and wait for it to load the plugin repositories.
Type TypeScript and select to install the official plugin.3.

Now we have TypeScript ready for Sublime Text, cheers!

Like Visual Studio Code, unmatched TypeScript versions between the plugin and compiler
could lead to problems. To fix this, you can add the field "typescript_tsdk" with a path
to the TypeScript lib in the Settings – User file.

Other editor or IDE options
Visual Studio Code and Sublime Text are recommended due to their ease of use and
popularity respectively. But there are many great tools from the editor class to full-featured
IDE.

https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package

Tools and Frameworks

[15]

Though we're not going through the setup and configuration of those tools, you might want
to try them out yourself, especially if you are already working with some of them.

However, the configuration for different editors and IDEs (especially IDEs) could differ. It is
recommended to use Visual Studio Code or Sublime Text for going through the workflow
and examples in this book.

Atom with the TypeScript plugin
Atom is a cross-platform editor created by GitHub. It has a notable community with plenty
of useful plugins, including atom-typescript. atom-typescript is the result of the
hard work of Basarat Ali Syed, and it's used by my team before Visual Studio Code. It has
many handy features that Visual Studio Code does not have yet, such as module path
suggestion, compile on save, and so on.

Like Visual Studio Code, Atom is also an editor based on web technologies. Actually, the
shell used by Visual Studio Code is exactly what's used by Atom: Electron, another popular
project by GitHub, for building cross-platform desktop applications.

Atom is proud of being hackable, which means you can customize your own Atom editor
pretty much as you want.

Then you may be wondering why we turned to Visual Studio Code. The main reason is that
Visual Studio Code is being backed by the same company that develops TypeScript, and
another reason might be the performance issue with Atom.

But anyway, Atom could be a great choice for a start.

Visual Studio
Visual Studio is one of the best IDEs in the market. And yet it has, of course, official
TypeScript support.

Since Visual Studio 2013, a community version is provided for free to individual
developers, small companies, and open source projects.

If you are looking for a powerful IDE of TypeScript on Windows, Visual Studio could be a
wonderful choice. Though Visual Studio has built-in TypeScript support, do make sure it's
up-to-date. And, usually, you might want to install the newest TypeScript tools for Visual
Studio.

Tools and Frameworks

[16]

WebStorm
WebStorm is one of the most popular IDEs for JavaScript developers, and it has had an
early adoption to TypeScript as well.

A downside of using WebStorm for TypeScript is that it is always one step slower catching
up to the latest version compared to other major editors. Unlike editors that directly use the
language service provided by the TypeScript project, WebStorm seems to have its own
infrastructure for IntelliSense and refactoring. But, in return, it makes TypeScript support in
WebStorm more customizable and consistent with other features it provides.

If you decide to use WebStorm as your TypeScript IDE, please make sure the version of
supported TypeScript matches what you expect (usually the latest version).

Getting your hands on the workflow
After setting up your editor, we are ready to move to a workflow that you might use to
practice throughout this book. It can also be used as the workflow for small TypeScript
projects in your daily work.

In this workflow, we'll walk through these topics:

What is a tsconfig.json file, and how can you configure a TypeScript project
with it?
TypeScript declaration files and the typings command-line tool
How to write tests running under Mocha, and how to get coverage information
using Istanbul
How to test in browsers using Karma

Configuring a TypeScript project
The configurations of a TypeScript project can differ for a variety of reasons. But the goals
remain clear: we need the editor as well as the compiler to recognize a project and its source
files correctly. And tsconfig.json will do the job.

www.allitebooks.com

http://www.allitebooks.org

Tools and Frameworks

[17]

Introduction to tsconfig.json
A TypeScript project does not have to contain a tsconfig.json file. However, most
editors rely on this file to recognize a TypeScript project with specified configurations and
to provide related features.

A tsconfig.json file accepts three fields: compilerOptions, files, and exclude. For
example, a simple tsconfig.json file could be like the following:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "rootDir": "src",
 "outDir": "out"
 },
 "exclude": [
 "out",
 "node_modules"
]
}

Or, if you prefer to manage the source files manually, it could be like this:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "rootDir": "src",
 "outDir": "out"
 },
 "files": [
 "src/foo.ts",
 "src/bar.ts"
]
}

Previously, when we used tsc, we needed to specify the source files explicitly. Now, with
tsconfig.json, we can directly run tsc without arguments (or with -w/--watch if you
want incremental compilation) in a folder that contains tsconfig.json.

Tools and Frameworks

[18]

Compiler options
As TypeScript is still evolving, its compiler options keep changing, with new features and
updates. An invalid option may break the compilation or editor features for TypeScript.
When reading these options, keep in mind that some of them might have been changed.

The following options are useful ones out of the list.

target
target specifies the expected version of JavaScript outputs. It could be es5 (ECMAScript
5), es6 (ECMAScript 6/2015), and so on.

Features (especially ECMAScript polyfills) that are available in different compilation targets
vary. For example, before TypeScript 2.1, features such as async/await were available only
when targeting ES6.

The good news is that Node.js 6 with the latest V8 engine has supported most ES6 features.
And the latest browsers have also great ES6 support. So if you are developing a Node.js
application or a browser application that's not required for backward compatibilities, you
can have your configuration target ES6.

module
Before ES6, JavaScript had no standard module system. Varieties of module loaders are
developed for different scenarios, such as commonjs, amd, umd, system, and so on.

If you are developing a Node.js application or an npm package, commonjs could be the
value of this option. Actually, with the help of modern packaging tools such as webpack
and browserify, commonjs could also be a nice choice for browser projects as well.

declaration
Enable this option to generate .d.ts declaration files along with JavaScript outputs.
Declaration files could be useful as the type information source of a distributed
library/framework; it could also be helpful for splitting a larger project to improve
compiling performance and division cooperation.

Tools and Frameworks

[19]

sourceMap
By enabling this option, TypeScript compiler will emit source maps along with compiled
JavaScript.

jsx
TypeScript provides built-in support for React JSX (.tsx) files. By specifying this option
with value react, TypeScript compiler will compile .tsx files to plain JavaScript files. Or
with value preserve, it will output .jsx files so you can post-process these files with other
JSX compilers.

noEmitOnError
By default, TypeScript will emit outputs no matter whether type errors are found or not. If
this is not what you want, you may set this option to true.

noEmitHelpers
When compiling a newer ECMAScript feature to a lower target version of JavaScript,
TypeScript compiler will sometimes generate helper functions such as __extends (ES6 to
lower versions), and __awaiter (ES7 to lower versions).

Due to certain reasons, you may want to write your own helper functions, and prevent
TypeScript compiler from emitting these helpers.

noImplicitAny
As TypeScript is a superset of JavaScript, it allows variables and parameters to have no type
notation. However, it could help to make sure everything is typed.

By enabling this option, TypeScript compiler will give errors if the type of a
variable/parameter is not specified and cannot be inferred by its context.

experimentalDecorators*
As decorators, at the time of writing this book, has not yet reached a stable stage of the new
ECMAScript standard, you need to enable this option to use decorators.

Tools and Frameworks

[20]

emitDecoratorMetadata*
Runtime type information could sometimes be useful, but TypeScript does not yet support
reflection (maybe it never will). Luckily, we get decorator metadata that will help under
certain scenarios.

By enabling this option, TypeScript will emit decorators along with a
Reflect.metadata() decorator which contains the type information of the decorated
target.

outDir
Usually, we do not want compiled files to be in the same folder of source code. By
specifying outDir, you can tell the compiler where you would want the compiled
JavaScript files to be.

outFile
For small browser projects, we might want to have all the outputs concatenated as a single
file. By enabling this option, we can achieve that without extra build tools.

rootDir
The rootDir option is to specify the root of the source code. If omitted, the compiler would
use the longest common path of source files. This might take seconds to understand.

For example, if we have two source files, src/foo.ts and src/bar.ts, and a
tsconfig.json file in the same directory of the src folder, the TypeScript compiler will
use src as the rootDir, so when emitting files to the outDir (let's say out), they will be
out/foo.js and out/bar.js.

However, if we add another source file test/test.ts and compile again, we'll get those
outputs located in out/src/foo.js, out/src/bar.js, and out/test/test.js
respectively. When calculating the longest common path, declaration files are not involved
as they have no output.

Usually, we don't need to specify rootDir, but it would be safer to have it configured.

Tools and Frameworks

[21]

preserveConstEnums
Enum is a useful tool provided by TypeScript. When compiled, it's in the form of an
Enum.member expression. Constant enum, on the other hand, emits number literals directly,
which means the Enum object is no longer necessary.

And thus TypeScript, by default, will remove the definitions of constant enums in the
compiled JavaScript files.

By enabling this option, you can force the compiler to keep these definitions anyway.

strictNullChecks
TypeScript 2.1 makes it possible to explicitly declare a type with undefined or null as its
subtype. And the compiler can now perform more thorough type checking for empty
values if this option is enabled.

stripInternal*
When emitting declaration files, there could be something you'll need to use internally but
without a better way to specify the accessibility. By commenting this code with /**
@internal */ (JSDoc annotation), TypeScript compiler then won't emit them to
declaration files.

isolatedModules
By enabling this option, the compiler will unconditionally emit imports for unresolved files.

Options suffixed with * are experimental and might have already been
removed when you are reading this book. For a more complete and up-to-
date compiler options list, please check out h t t p : / / w w w . t y p e s c r i p t l a n g .

o r g / d o c s / h a n d b o o k / c o m p i l e r - o p t i o n s . h t m l.

Adding source map support
Source maps can help a lot while debugging, no matter for a debugger or for error stack
traces from a log.

To have source map support, we need to enable the sourceMap compiler option in
tsconfig.json. Extra configurations might be necessary to make your debugger work
with source maps.

http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html

Tools and Frameworks

[22]

For error stack traces, we can use the help of the source-map-support package:

$ npm install source-map-support --save

To put it into effect, you can import this package with its register submodule in your
entry file:

import 'source-map-support/register';

Downloading declarations using typings
JavaScript has a large and booming ecosystem. As the bridge connecting TypeScript and
other JavaScript libraries and frameworks, declaration files are playing a very important
role.

With the help of declaration files, TypeScript developer can use existing JavaScript libraries
with nearly the same experience as libraries written in TypeScript.

Thanks to the efforts of the TypeScript community, almost every popular JavaScript library
or framework got its declaration files on a project called DefinitelyTyped. And there has
already been a tool called tsd for declaration file management. But soon, people realized
the limitation of a single huge repository for everything, as well as the issues tsd cannot
solve nicely. Then typings is gently becoming the new tool for TypeScript declaration file
management.

Installing typings
typings is just another Node.js package with a command-line interface like TypeScript
compiler. To install typings, simply execute the following:

$ npm install typings -g

To make sure it has been installed correctly, you can now try the typings command with
argument --version:

$ typings --version
1.x.x

Tools and Frameworks

[23]

Downloading declaration files
Create a basic Node.js project with a proper tsconfig.json (module option set as
commonjs), and a test.ts file:

import * as express from 'express';

Without the necessary declaration files, the compiler would complain with Cannot find
module express. And, actually, you can't even use Node.js APIs such as process.exit()
or require Node.js modules, because TypeScript itself just does not know what Node.js is.

To begin with, we'll need to install declaration files of Node.js and Express:

$ typings install env~node --global
$ typings install express

If everything goes fine, typings should've downloaded several declaration files and saved
them to folder typings, including node.d.ts, express.d.ts, and so on. And I guess
you've already noticed the dependency relationship existing on declaration files.

If this is not working for you and typings complains with Unable to find
“express” (“npm”) in the registry then you might need to do it the hard
way – to manually install Express declaration files and their dependencies
using the following command:
$ typings install dt~<package-name> –global
The reason for that is the community might still be moving from
DefinitelyTyped to the typings registry. The prefix dt~ tells typings
to download declaration files from DefintelyTyped, and --global
option tells typings to save these declaration files as ambient modules
(namely declarations with module name specified).

typings has several registries, and the default one is called npm (please understand this
npm registry is not the npm package registry). So, if no registry is specified with <source>~
prefix or --source option, it will try to find declaration files from its npm registry. This
means that typings install express is equivalent to typings install
npm~express or typings install express --source npm.

While declaration files for npm packages are usually available on the npm registry,
declaration files for the environment are usually available on the env. registry. As those
declarations are usually global, a --global option is required for them to install correctly.

Tools and Frameworks

[24]

Option “save”
typings actually provides a --save option for saving the typing names and file sources to
typings.json. However, in my opinion, this option is not practically useful.

It's great to have the most popular JavaScript libraries and frameworks typed, but these
declaration files, especially declarations not frequently used, can be inaccurate, which
means there's a fair chance that you will need to edit these files yourself.

It would be nice to contribute declarations, but it would also be more flexible to have
typings m managed by source control as part of the project code.

Testing with Mocha and Istanbul
Testing could be an important part of a project, which ensures feature consistency and
discovers bugs earlier. It is common that a change made for one feature could break another
working part of the project. A robust design could minimize the chance but we still need
tests to make sure.

It could lead to an endless discussion about how tests should be written and there are
interesting code design techniques such as test-driven development (TDD); though there
has been a lot of debates around it, it still worth knowing and may inspire you in certain
ways.

Mocha and Chai
Mocha has been one of the most popular test frameworks for JavaScript, while Chai is a
good choice as an assertion library. To make life easier, you may write tests for your own
implementations of contents through this book using Mocha and Chai.

To install Mocha, simply run the following command, and it will add mocha as a global
command-line tool just like tsc and typings:

$ npm install mocha -g

Chai, on the other hand, is used as a module of a project, and should be installed under the
project folder as a development dependency:

$ npm install chai --save-dev

Tools and Frameworks

[25]

Chai supports should style assertion. By invoking chai.should(), it adds the should
property to the prototype of Object, which means you can then write assertions such as the
following:

'foo'.should.not.equal('bar');
'typescript'.should.have.length(10);

Writing tests in JavaScript
By executing the command mocha, it will automatically run tests inside the test folder.
Before we start to write tests in TypeScript, let's try it out in plain JavaScript and make sure
it's working.

Create a file test/starter.js and save it with the following code:

require('chai').should();

describe('some feature', () => {
 it('should pass', () => {
 'foo'.should.not.equal('bar');
 });

 it('should error', () => {
 (() => {
 throw new Error();
 }).should.throw();
 });
});

Run mocha under the project folder and you should see all tests passing.

Writing tests in TypeScript
Tests written in TypeScript have to be compiled before being run; where to put those files
could be a tricky question to answer.

Some people might want to separate tests with their own tsconfig.json:

src/tsconfig.json
test/tsconfig.json

They may also want to put output files somewhere reasonable:

out/app/
out/test/

Tools and Frameworks

[26]

However, this will increase the cost of build process management for small projects. So, if
you do not mind having src in the paths of your compiled files, you can have only one
tsconfig.json to get the job done:

src/
test/
tsconfig.json

The destinations will be as follows:

out/src/
out/test/

Another option I personally prefer is to have tests inside of src/test, and use the test
folder under the project root for Mocha configurations:

src/
src/test/
tsconfig.json

The destinations will be as follows:

out/
out/test/

But, either way, we'll need to configure Mocha properly to do the following:

Run tests under the out/test directory
Configure the assertion library and other tools before starting to run tests

To achieve these, we can take advantage of the mocha.opts file instead of specifying
command-line arguments every time. Mocha will combine lines in the mocha.opts file
with other command-line arguments given while being loaded.

Create test/mocha.opts with the following lines:

--require ./test/mocha.js
out/test/

As you might have guessed, the first line is to tell Mocha to require ./test/mocha.js
before starting to run actual tests. And the second line tells Mocha where these tests are
located.

And, of course, we'll need to create test/mocha.js correspondingly:

require('chai').should();

Tools and Frameworks

[27]

Almost ready to write tests in TypeScript! But TypeScript compiler does not know how
would function describe or it be like, so we need to download declaration files for
Mocha:

 $ typings install env~mocha --global

Now we can migrate the test/starter.js file to src/test/starter.ts with nearly no
change, but removing the first line that enables the should style assertion of Chai, as we
have already put it into test/mocha.js.

Compile and run; buy me a cup of coffee if it works. But it probably won't. We've talked
about how TypeScript compiler determines the root of source files when explaining the
rootDir compiler option. As we don't have any TypeScript files under the src folder (not
including its subfolders), TypeScript compiler uses src/test as the rootDir. Thus the
compiled test files are now under the out folder instead of the expected out/test.

To fix this, either explicitly specify rootDir, or just add the first non-test TypeScript file to
the src folder.

Getting coverage information with Istanbul
Coverage could be important for measuring the quality of tests. However, it might take
much effort to reach a number close to 100%, which could be a burden for developers. To
balance efforts on tests and code that bring direct value to the product, there would go
another debate.

Install Istanbul via npm just as with the other tools:

 $ npm install istanbul -g

The subcommand for Istanbul to generate code coverage information is istanbul cover.
It should be followed by a JavaScript file, but we need to make it work with Mocha, which
is a command-line tool. Luckily, the entry of the Mocha command is, of course, a JavaScript
file.

To make them work together, we'll need to install a local (instead of global) version of
Mocha for the project:

$ npm install mocha --save-dev

Tools and Frameworks

[28]

After installation, we'll get the file _mocha under node_modules/mocha/bin, which is the
JavaScript entry we were looking for. So now we can make Istanbul work:

$ istanbul cover node_modules/mocha/bin/_mocha

Then you should've got a folder named coverage, and within it the coverage report.

Reviewing the coverage report is important; it can help you decide whether you need to
add tests for specific features and code branches.

Testing in real browsers with Karma
We've talked about testing with Mocha and Istanbul for Node.js applications. It is an
important topic for testing code that runs in a browser as well.

Karma is a test runner for JavaScript that makes testing in real browsers on real devices
much easier. It officially supports the Mocha, Jasmine, and JUnit testing frameworks, but it's
also possible for Karma to work with any framework via a simple adapter.

Creating a browser project
A TypeScript application that runs in browsers can be quite different from a Node.js one.
But if you know what the project should look like after the build, you should already have
clues on how to configure that project.

To avoid introducing too many concepts and technologies not directly related, I will keep
things as simple as possible:

We're not going to use module loaders such as Require.js
We're not going to touch the code packaging process

This means we'll go with separated output files that need to be put into an HTML file with a
script tag manually. Here's the tsconfig.json we'll be playing with; notice that we no
longer have the module option, set:

{
 "compilerOptions": {
 "target": "es5",
 "rootDir": "src",
 "outDir": "out"
 },
 "exclude": [
 "out",

Tools and Frameworks

[29]

 "node_modules"
]
}

Then let's create package.json and install packages mocha and chai with their
declarations:

$ npm init
$ npm install mocha chai --save-dev
$ typings install env~mocha --global
$ typings install chai

And to begin with, let's fill this project with some source code and tests.

Create src/index.ts with the following code:

function getLength(str: string): number {
 return str.length;
}

And create src/test/test.ts with some tests:

describe('get length', () => {
 it('"abc" should have length 3', () => {
 getLength('abc').should.equal(3);
 });

 it('"" should have length 0', () => {
 getLength('').should.equal(0);
 });
});

Again, in order to make the should style assertion work, we'll need to call chai.should()
before tests start. To do so, create file test/mocha.js just like we did in the Node.js
project, though the code line slightly differs, as we no longer use modules:

chai.should();

Now compile these files with tsc, and we've got our project ready.

Tools and Frameworks

[30]

Installing Karma
Karma itself runs on Node.js, and is available as an npm package just like other Node.js
tools we've been using. To install Karma, simply execute the npm install command in the
project directory:

$ npm install karma --save-dev

And, in our case, we are going to have Karma working with Mocha, Chai, and the browser
Chrome, so we'll need to install related plugins:

$ npm install karma-mocha karma-chai karma-chrome-launcher --save-dev

Before we configure Karma, it is recommended to have karma-cli installed globally so
that we can execute the karma command from the console directly:

$ npm install karma-cli -g

Configuring and starting Karma
The configurations are to tell Karma about the testing frameworks and browsers you are
going to use, as well as other related information such as source files and tests to run.

To create a Karma configuration file, execute karma init and answer its questions:

Testing framework: Mocha
Require.js: no
Browsers: Chrome (add more if you like; be sure to install the corresponding
launchers)
Source and test files:

test/mocha.js (the file enables should style assertion)
out/*.js (source files)
out/test/*.js (test files)

Files to exclude: empty
Watch for changes: yes

Now you should see a karma.conf.js file under the project directory; open it with your
editor and add 'chai' to the list of option frameworks.

Almost there! Execute the command karma start and, if everything goes fine, you should
have specified browsers opened with the testing results being logged in the console in
seconds.

Tools and Frameworks

[31]

Integrating commands with npm
The npm provides a simple but useful way to define custom scripts that can be run with the
npm run command. And it has another advantage – when npm run a custom script, it adds
node_modules/.bin to the PATH. This makes it easier to manage project-related
command-line tools.

For example, we've talked about Mocha and Istanbul. The prerequisite for having them as
commands is to have them installed globally, which requires extra steps other than npm
install. Now we can simply save them as development dependencies, and add custom
scripts in package.json:

"scripts": {
 "test": "mocha",
 "cover": "istanbul cover node_modules/mocha/bin/_mocha"
},
"devDependencies": {
 "mocha": "latest",
 "istanbul": "latest"
}

Now you can run test with npm run test (or simply npm test), and run cover with
npm run cover without installing these packages globally.

Why not other fancy build tools?
You might be wondering: why don't we use a build system such as Gulp to set up our
workflow? Actually, when I started to write this chapter, I did list Gulp as the tool we were
going to use. Later, I realized it does not make much sense to use Gulp to build the
implementations in most of the chapters in this book.

There is a message I want to deliver: balance.

Once, I had a discussion on balance versus principles with my boss. The disagreement was
clear: he insisted on controllable principles over subjective balance, while I prefer contextual
balance over fixed principles.

Actually, I agree with him, from the point of view of a team leader. A team is usually built
up with developers at different levels; principles make it easier for a team to build high-
quality products, while not everyone is able to find the right balance point.

However, when the role turns from a productive team member to a learner, it is important
to learn and to feel the right balance point. And that's called experience.

Tools and Frameworks

[32]

Summary
The goal of this chapter was to introduce a basic workflow that could be used by the reader
to implement the design patterns we'll be discussing.

We talked about the installation of TypeScript compiler that runs on Node.js, and had brief
introductions to popular TypeScript editors and IDEs. Later, we spent quite a lot of pages
walking through the tools and frameworks that could be used if the reader wants to have
some practice with implementations of the patterns in this book.

With the help of these tools and frameworks, we've built a minimum workflow that
includes creating, building, and testing a project. And talking about workflows, you must
have noticed that they slightly differ among applications for different runtimes.

In the next chapter, we'll talk about what may go wrong and mess up the entire project
when its complexity keeps growing. And we'll try to come up with specific patterns that can
solve the problems this very project faces.

2
The Challenge of Increasing

Complexity
The essence of a program is the combination of possible branches and automated selections
based on certain conditions. When we write a program, we define what's going on in a
branch, and under what condition this branch will be executed.

The number of branches usually grows quickly during the evolution of a project, as well as
the number of conditions that determine whether a branch will be executed or not.

This is dangerous for human beings, who have limited brain capacities.

In this chapter, we are going to implement a data synchronizing service. Starting by
implementing some very basic features, we'll keep adding stuff and see how things go.

The following topics will be covered:

Designing a multi-device synchronizing strategy
Useful JavaScript and TypeScript techniques and hints that are related, including
objects as maps and the string literal type
How the Strategy Pattern helps in a project

The Challenge of Increasing Complexity

[34]

Implementing the basics
Before we start to write actual code, we need to define what this synchronizing strategy will
be like. To keep the implementation from unnecessary distractions, the client will
communicate with the server directly through function calls instead of using HTTP requests
or Sockets. Also, we'll use in-memory storage, namely variables, to store data on both client
and server sides.

Because we are not separating the client and server into two actual applications, and we are
not actually using backend technologies, it does not require much Node.js experience to
follow this chapter.

However, please keep in mind that even though we are omitting network and database
requests, we hope the core logic of the final implementation could be applied to a real
environment without being modified too much. So, when it comes to performance concerns,
we still need to assume limited network resources, especially for data passing through the
server and client, although the implementation is going to be synchronous instead of
asynchronous. This is not supposed to happen in practice, but involving asynchronous
operations will introduce much more code, as well as many more situations that need to be
taken into consideration. But we will have some useful patterns on asynchronous
programming in the coming chapters, and it would definitely help if you try to implement
an asynchronous version of the synchronizing logic in this chapter.

A client, if without modifying what's been synchronized, stores a copy of all the data
available on the server, and what we need to do is to provide a set of APIs that enable the
client to keep its copy of data synchronized.

So, it is really simple at the beginning: comparing the last-modified timestamp. If the
timestamp on the client is older than what's on the server, then update the copy of data
along with new timestamp.

Creating the code base
Firstly, let's create server.ts and client.ts files containing the Server class and
Client class respectively:

export class Server {
 // ...
}

export class Client {
 // ...

The Challenge of Increasing Complexity

[35]

}

I prefer to create an index.ts file as the package entry, which handles what to export
internally. In this case, let's export everything:

export * from './server';
export * from './client';

To import the Server and Client classes from a test file (assuming src/test/test.ts),
we can use the following codeto s:

import { Server, Client } from '../';

Defining the initial structure of the data to be
synchronized
Since we need to compare the timestamps from the client and server, we need to have a
timestamp property on the data structure. I would like to have the data to synchronize as a
string, so let's add a DataStore interface with a timestamp property to the server.ts
file:

export interface DataStore {
 timestamp: number;
 data: string;
}

Getting data by comparing timestamps
Currently, the synchronizing strategy is one-way, from the server to the client. So what we
need to do is simple: we compare the timestamps; if the server has the newer one, it
responds with data and the server-side timestamp; otherwise, it responds with undefined:

class Server {
 store: DataStore = {
 timestamp: 0,
 data: ''
 };

 getData(clientTimestamp: number): DataStore {
 if (clientTimestamp < this.store.timestamp) {
 return this.store;
 } else {
 return undefined;

The Challenge of Increasing Complexity

[36]

 }
 }
}

Now we have provided a simple API for the client, and it's time to implement the client:

import { Server, DataStore } from './';

export class Client {
 store: DataStore = {
 timestamp: 0,
 data: undefined
 };
 constructor(
 public server: Server
) { }
}

Prefixing a constructor parameter with access modifiers (including
public, private, and protected) will create a property with the same
name and corresponding accessibility. It will also assign the value
automatically when the constructor is called.

Now we need to add a synchronize method to the Client class that does the job:

synchronize(): void {
 let updatedStore = this.server.getData(this.store.timestamp);
 if (updatedStore) {
 this.store = updatedStore;
 }
}

That's easily done. However, are you already feeling somewhat awkward with what we've
written?

Two-way synchronizing
Usually, when we talk about synchronization, we get updates from the server and push
changes to the server as well. Now we are going to do the second part, pushing the changes
if the client has newer data.

www.allitebooks.com

http://www.allitebooks.org

The Challenge of Increasing Complexity

[37]

But first, we need to give the client the ability to update its data by adding an update
method to the Client class:

update(data: string): void {
 this.store.data = data;
 this.store.timestamp = Date.now();
}

And we need the server to have the ability to receive data from the client as well. So we
rename the getData method of the Server class as synchronize and make it satisfy the
new job:

synchronize(clientDataStore: DataStore): DataStore {
 if (clientDataStore.timestamp > this.store.timestamp) {
 this.store = clientDataStore;
 return undefined;
 } else if (clientDataStore.timestamp < this.store.timestamp) {
 return this.store;
 } else {
 return undefined;
 }
}

Now we have the basic implementation of our synchronizing service. Later, we'll keep
adding new things and make it capable of dealing with a variety of scenarios.

Things that went wrong while implementing the
basics
Currently, what we've written is just too simple to be wrong. But there are still some
semantic issues.

Passing a data store from the server to the client does
not make sense
We used DataStore as the return type of the synchronize method on Server. But what
we were actually passing through is not a data store, but information that involves data and
its timestamp. The information object just happened to have the same properties as a data
store at this point in time.

The Challenge of Increasing Complexity

[38]

Also, it will be misleading to people who will later read your code (including yourself in the
future). Most of the time, we are trying to eliminate redundancies. But that does not have to
mean everything that looks the same. So let's make it two interfaces:

interface DataStore {
 timestamp: number;
 data: string;
}

interface DataSyncingInfo {
 timestamp: number;
 data: string;
}

I would even prefer to create another instance, instead of directly returning this.store:

return {
 timestamp: this.store.timestamp,
 data: this.store.data
};

However, if two pieces of code with different semantic meanings are doing the same thing
from the perspective of code itself, you may consider extracting that part as a utility.

Making the relationships clear
Now we have two separated interfaces, DataStore and DataSyncingInfo, in server.ts.
Obviously, DataSyncingInfo should be a shared interface between the server and the
client, while DataStore happens to be the same on both sides, but it's not actually shared.

So what we are going to do is to create a separate shared.d.ts (it could also be
shared.ts if it contains more than typings) that exports DataSyncingInfo and add
another DataStore to client.ts.

Do not follow this blindly. Sometimes it is designed for the server and the
client to have exactly the same stores. If that's the situation, the interface
should be shared.

The Challenge of Increasing Complexity

[39]

Growing features
What we've done so far is basically useless. But, from now on, we will start to add features
and make it capable of fitting in practical needs, including the capability of synchronizing
multiple data items with multiple clients, and merging conflicts.

Synchronizing multiple items
Ideally, the data we need to synchronize will have a lot of items contained. Directly
changing the type of data to an array would work if there were only very limited number
of these items.

Simply replacing data type with an array
Now let's change the type of the data property of DataStore and DataSyncingInfo
interfaces to string[]. With the help of TypeScript, you will get errors for unmatched
types this change would cause. Fix them by annotating the correct types.

But obviously, this is far from an efficient solution.

Server-centered synchronization
If the data store contains a lot of data, the ideal approach would be only updating items that
are not up-to-date.

For example, we can create a timestamp for every single item and send these timestamps to
the server, then let the server decide whether a specific data item is up-to-date. This is a
viable approach for certain scenarios, such as checking updates for software extensions. It is
okay to occasionally send even hundreds of timestamps with item IDs on a fast network,
but we are going to use another approach for different scenarios, or I won't have much to
write.

User data synchronization of offline apps on a mobile phone is what we are going to deal
with, which means we need to try our best to avoid wasting network resources.

Here is an interesting question. What are the differences between user
data synchronization and checking extension updates? Think about the
size of data, issues with multiple devices, and more.

The Challenge of Increasing Complexity

[40]

The reason why we thought about sending timestamps of all items is for the server to
determine whether certain items need to be updated. However, is it necessary to have the
timestamps of all data items stored on the client side?

What if we choose not to store the timestamp of data changing, but of data being
synchronized with the server? Then we can get everything up-to-date by only sending the
timestamp of the last successful synchronization. The server will then compare this
timestamp with the last modified timestamps of all data items and decide how to respond.

As the title of this part suggests, the process is server-centered and relies on the server to
generate the timestamps (though it does not have to, and practically should not, be the
stamp of the actual time).

If you are getting confused about how these timestamps work, let's try
again. The server will store the timestamps of the last time items were
synchronized, and the client will store the timestamp of the last successful
synchronization with the server. Thus, if no item on the server has a later
timestamp than the client, then there's no change to the server data store
after that timestamp. But if there are some changes, by comparing the
timestamp of the client with the timestamps of server items, we'll know
which items are newer.

Synchronizing from the server to the client
Now there seems to be quite a lot to change. Firstly, let's handle synchronizing data from
server to client.

This is what's expected to happen on the server side:

Add a timestamp and identity to every data item on the server
Compare the client timestamp with every data item on the server

We don't need to actually compare the client timestamp with every item
on server if those items have a sorted index. The performance would be
acceptable using a database with a sorted index.

Respond with items newer than what the client has as well as a new timestamp.

The Challenge of Increasing Complexity

[41]

And here's what's expected to happen on the client side:

Synchronize with the last timestamp sent to the server
Update the local store with new data responded by the server
Update the local timestamp of the last synchronization if it completes without
error

Updating interfaces

First of all, we have now an updated data store on both sides. Starting with the server, the
data store now contains an array of data items. So let's define the ServerDataItem
interface and update ServerDataStore as well:

export interface ServerDataItem {
 id: string;
 timestamp: number;
 value: string;
}

export interface ServerDataStore {
 items: {
 [id: string]: ServerDataItem;
 };
}

The { [id: string]: ServerDataItem } type describes an object
with id of type string as a key and has the value of type
ServerDataItem. Thus, an item of type ServerDataItem can be
accessed by items['the-id'].

And for the client, we now have different data items and a different store. The response
contains only a subset of all data items, so we need IDs and a map with ID as the index to
store the data:

export interface ClientDataItem {
 id: string;
 value: string;
}

export interface ClientDataStore {
 timestamp: number;
 items: {
 [id: string]: ClientDataItem;
 };
}

The Challenge of Increasing Complexity

[42]

Previously, the client and server were sharing the same DataSyncingInfo, but that's going
to change. As we'll deal with server-to-client synchronizing first, we care only about the
timestamp in a synchronizing request for now:

export interface SyncingRequest {
 timestamp: number;
}

As for the response from the server, it is expected to have an updated timestamp with data
items that have changed compared to the request timestamp:

export interface SyncingResponse {
 timestamp: number;
 changes: {
 [id: string]: string;
 };
}

I prefixed those interfaces with Server and Client for better differentiation. But it's not
necessary if you are not exporting everything from server.ts and client.ts (in
index.ts).

Updating the server side

With well-defined data structures, it should be pretty easy to achieve what we expected. To
begin with, we have the synchronize method, which accepts a SyncingRequest and
returns a SyncingResponse; and we need to have the updated timestamp as well:

synchronize(request: SyncingRequest): SyncingResponse {
 let lastTimestamp = request.timestamp;
 let now = Date.now();
 let serverChanges: ServerChangeMap = Object.create(null);
 return {
 timestamp: now,
 changes: serverChanges
 };
}

For the serverChanges object, {} (an object literal) might be the first
thing (if not an ES6 Map) that comes to mind. But it's not absolutely safe to
do so, because it would refuse __proto__ as a key. The better choice
would be Object.create(null), which accepts all strings as its key.

The Challenge of Increasing Complexity

[43]

Now we are going to add items that are newer than the client to serverChanges:

let items = this.store.items;

for (let id of Object.keys(items)) {
 let item = items[id];
 if (item.timestamp > lastTimestamp) {
 serverChanges[id] = item.value;
 }
}

Updating the client side

As we've changed the type of items under ClientDataStore to a map, we need to fix the
initial value:

store: ClientDataStore = {
 timestamp: 0,
 items: Object.create(null)
};

Now let's update the synchronize method. Firstly, the client is going to send a request
with a timestamp and get a response from the server:

synchronize(): void {
 let store = this.store;
 let response = this.server.synchronize({
 timestamp: store.timestamp
 });
}

Then we'll save the newer data items to the store:

let clientItems = store.items;
let serverChanges = response.changes;

for (let id of Object.keys(serverChanges)) {
 clientItems[id] = {
 id,
 value: serverChanges[id]
 };
}

Finally, update the timestamp of the last successful synchronization:

clientStore.timestamp = response.timestamp;

The Challenge of Increasing Complexity

[44]

Updating the synchronization timestamp should be the last thing to do
during a complete synchronization process. Make sure it's not stored
earlier than data items, or you might have a broken offline copy if there's
any errors or interruptions during synchronizing in the future.

To ensure that this works as expected, an operation with the same change
information should give the same results even if it's applied multiple
times.

Synchronizing from client to server
For a server-centered synchronizing process, most of the changes are made through clients.
Consequently, we need to figure out how to organize these changes before sending them to
the server.

One single client only cares about its own copy of data. What difference would this make
when comparing to the process of synchronizing data from the server to clients? Well, think
about why we need the timestamp of every data item on the server in the first place. We
need them because we want to know which items are new compared to a specific client.

Now, for changes on a client: if they ever happen, they need to be synchronized to the
server without requiring specific timestamps for comparison.

However, we might have more than one client with changes that need to be synchronized,
which means that changes made later in time might actually get synchronized earlier, and
thus we'll have to resolve conflicts. To achieve that, we need to add the last modified time
back to every data item on the server and the changed items on the client.

I've mentioned that the timestamps stored on the server for finding out what needs to be
synchronized to a client do not need to be (and better not be) an actual stamp of a physical
time point. For example, it could be the count of synchronizations that happened between
all clients and the server.

Updating the client side

To handle this efficiently, we may create a separated map with the IDs of the data items that
have changed as keys and the last modified time as the value in ClientDataStore:

export interface ClientDataStore {
 timestamp: number;
 items: {
 [id: string]: ClientDataItem;
 };

The Challenge of Increasing Complexity

[45]

 changed: {
 [id: string]: number;
 };
}

You may also want to initialize its value as Object.create(null).

Now when we update an item in the client store, we add the last modified time to the
changed map as well:

update(id: string, value: string): void {
 let store = this.store;
 store.items[id] = {
 id,
 value
 };
 store.changed[id] = Date.now();
}

A single timestamp in SyncingRequest certainly won't do the job any more; we need to
add a place for the changed data, a map with data item ID as the index, and the changed
information as the value:

export interface ClientChange {
 lastModifiedTime: number;
 value: string;
}

export interface SyncingRequest {
 timestamp: number;
 changes: {
 [id: string]: ClientChange;
 };
}

Here comes another problem. What if a change made to a client data item is done offline,
with the system clock being at the wrong time? Obviously, we need some time calibration
mechanisms. However, there's no way to make perfect calibration. We'll make some
assumptions so we don't need to start another chapter for time calibration:

The system clock of a client may be late or early compared to the server. But it
ticks at a normal speed and won't jump between times.
The request sent from a client reaches the server in a relatively short time.

The Challenge of Increasing Complexity

[46]

With those assumptions, we can add those building blocks to the client-side synchronize
method:

Add client-side changes to the synchronizing request (of course, before sending it1.
to the server):

 let clientItems = store.items;
 let clientChanges: ClientChangeMap = Object.create(null);

 let changedTimes = store.changed;

 for (let id of Object.keys(changedTimes)) {
 clientChanges[id] = {
 lastModifiedTime: changedTimes[id],
 value: clientItems[id].value
 };
 }

Synchronize changes to the server with the current time of the client's clock:2.

 let response = this.server.synchronize({
 timestamp: store.timestamp,
 clientTime: Date.now(),
 changes: clientChanges
 });

Clean the changes after a successful synchronization:3.

 store.changed = Object.create(null);

Updating the server side

If the client is working as expected, it should send synchronizing requests with changes. It's
time to enable the server to handling those changes from the client.

There are going to be two steps for the server-side synchronization process:

Apply the client changes to server data store.1.
Prepare the changes that need to be synchronized to the client.2.

First, we need to add lastModifiedTime to server-side data items, as we mentioned
before:

export interface ServerDataItem {
 id: string;
 timestamp: number;
 lastModifiedTime: number;

The Challenge of Increasing Complexity

[47]

 value: string;
}

And we need to update the synchronize method:

let clientChanges = request.changes;
let now = Date.now();

for (let id of Object.keys(clientChanges)) {
 let clientChange = clientChanges[id];
 if (
 hasOwnProperty.call(items, id) &&
 items[id].lastModifiedTime > clientChange.lastModifiedTime
) {
 continue;
 }
 items[id] = {
 id,
 timestamp: now,
 lastModifiedTime,
 value: clientChange.value
 };
}

We can actually use the in operator instead of hasOwnProperty here
because the items object is created with null as its prototype. But a
reference to hasOwnProperty will be your friend if you are using objects
created by object literals, or in other ways, such as maps.

We already talked about resolving conflicts by comparing the last modified times. At the
same time, we've made assumptions so we can calibrate the last modified times from the
client easily by passing the client time to the server while synchronizing.

What we are going to do for calibration is to calculate the offset of the client time compared
to the server time. And that's why we made the second assumption: the request needs to
easily reach the server in a relatively short time. To calculate the offset, we can simply
subtract the client time from the server time:

let clientTimeOffset = now - request.clientTime;

To make the time calibration more accurate, we would want the earliest
timestamp after the request hits the server to be recorded as “now”. So in
practice, you might want to record the timestamp of the request hitting the
server before start processing everything. For example, for HTTP request,
you may record the timestamp once the TCP connection gets established.

The Challenge of Increasing Complexity

[48]

And now, the calibrated time of a client change is the sum of the original time and the
offset. We can now decide whether to keep or ignore a change from the client by comparing
the calibrated last modified time. It is possible for the calibrated time to be greater than the
server time; you can choose either to use the server time as the maximum value or accept a
small inaccuracy. Here, we will go the simple way:

let lastModifiedTime = Math.min(
 clientChange.lastModifiedTime + clientTimeOffset,
 now
);

if (
 hasOwnProperty.call(items, id) &&
 items[id].lastModifiedTime > lastModifiedTime
) {
 continue;
}

To make this actually work, we need to also exclude changes from the server that conflict
with client changes in SyncingResponse. To do so, we need to know what the changes are
that survive the conflict resolving process. A simple way is to exclude items with timestamp
that equals now:

for (let id of Object.keys(items)) {
 let item = items[id];
 if (
 item.timestamp > lastTimestamp &&
 item.timestamp !== now
) {
 serverChanges[id] = item.value;
 }
}

So now we have implemented a complete synchronization logic with the ability to handle
simple conflicts in practice.

The Challenge of Increasing Complexity

[49]

Synchronizing multiple types of data
At this point, we've hard coded the data with the string type. But usually we will need to
store varieties of data, such as numbers, booleans, objects, and so on.

If we were writing JavaScript, we would not actually need to change anything, as the
implementation does not have anything to do with certain data types. In TypeScript, we
don't need to do much either: just change the type of every related value to any. But that
means you are losing type safety, which would definitely be okay if you are happy with
that.

But taking my own preferences, I would like every variable, parameter, and property to be
typed if it's possible. So we may still have a data item with value of type any:

export interface ClientDataItem {
 id: string;
 value: any;
}

We can also have derived interfaces for specific data types:

export interface ClientStringDataItem extends ClientDataItem {
 value: string;
}

export interface ClientNumberDataItem extends ClientDataItem {
 value: number;
}

But this does not seem to be good enough. Fortunately, TypeScript provides generics, so we
can rewrite the preceding code as follows:

export interface ClientDataItem<T> {
 id: string;
 value: T;
}

Assuming we have a store that accepts multiple types of data items – for example, number
and string – we can declare it as follows with the help of the union type:

export interface ClientDataStore {
 items: {
 [id: string]: ClientDataItem<number | string>;
 };
}

The Challenge of Increasing Complexity

[50]

If you remember that we are doing something for offline mobile apps, you might be
questioning the long property names in changes such as lastModifiedTime. This is a fair
question, and an easy fix is to use tuple types, maybe along with enums:

const enum ClientChangeIndex {
 lastModifiedType,
 value
}

type ClientChange<T> = [number, T];

let change: ClientChange<string> = [0, 'foo'];
let value = change[ClientChangeIndex.value];

You can apply less or more of the typing things we are talking about depending on your
preferences. If you are not familiar with them yet, you can read more here: h t t p : / / w w w . t y p

e s c r i p t l a n g . o r g / h a n d b o o k.

Supporting multiple clients with incremental data
Making the typing system happy with multiple data types is easy. But in the real world, we
don't resolve conflicts of all data types by simply comparing the last modified times. An
example is counting the daily active time of a user cross devices.

It's quite clear that we need to have every piece of active time in a day on multiple devices
summed up. And this is how we are going to achieve that:

Accumulate active durations between synchronizations on the client.1.
Add a UID (unique identifier) to every piece of time before synchronizing with2.
the server.
Increase the server-side value if the UID does not exist yet, and then add the UID3.
to that data item.

But before we actually get our hands on those steps, we need a way to distinguish
incremental data items from normal ones, for example, by adding a type property.

As our synchronizing strategy is server-centered, related information is only required for
synchronizing requests and conflict merging. Synchronizing responses does not need to
include the details of changes, but just merged values.

http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook

The Challenge of Increasing Complexity

[51]

I will stop telling how to update every interface step by step as we are
approaching the final structure. But if you have any problems with that,
you can check out the complete code bundle for inspiration.

Updating the client side
First of all, we need the client to support incremental changes. And if you've thought about
this, you might already be confused about where to put the extra information, such as UIDs.

This is because we were mixing up the concept change (noun) with value. It was not a
problem before because, besides the last modified time, the value is what a change is about.
We used a simple map to store the last modified times and kept the store clean from
redundancy, which balanced well under that scenario.

But now we need to distinguish between these two concepts:

Value: a value describes what a data item is in a static way
Change: a change describes the information that may transform the value of a
data item from one to another

We need to have a general type of changes as well as a new data structure for incremental
changes with a numeric value:

type DataType = 'value' | 'increment';

interface ClientChange {
 type: DataType;
}

interface ClientValueChange<T> extends ClientChange {
 type: 'value';
 lastModifiedTime: number;
 value: T;
}

interface ClientIncrementChange extends ClientChange {
 type: 'increment';
 uid: string;
 increment: number;
}

The Challenge of Increasing Complexity

[52]

We are using the string literal type here, which was introduced in
TypeScript 1.8. To learn more, please refer to the TypeScript handbook as
we mentioned before.

Similar changes to the data store structure should be made. And when we update an item
on the client side, we need to apply the correct operations based on different data types:

update(id: string, type: 'increment', increment: number): void;
update<T>(id: string, type: 'value', value: T): void;
update<T>(id: string, type: DataType, value: T): void;
update<T>(id: string, type: DataType, value: T): void {
 let store = this.store;
 let items = store.items;
 let storedChanges = store.changes;
 if (type === 'value') {
 // ...
 } else if (type === 'increment') {
 // ...
 } else {
 throw new TypeError('Invalid data type');
 }
}

Use the following code for normal changes (while type equals 'value'):

let change: ClientValueChange<T> = {
 type: 'value',
 lastModifiedTime: Date.now(),
 value
};

storedChanges[id] = change;

if (hasOwnProperty.call(items, id)) {
 items[id].value = value;
} else {
 items[id] = {
 id,
 type,
 value
 };
}

The Challenge of Increasing Complexity

[53]

For incremental changes, it takes a few more lines:

let storedChange = storedChanges[id] as ClientIncrementChange;

if (storedChange) {
 storedChange.increment += <any>value as number;
} else {
 storedChange = {
 type: 'increment',
 uid: Date.now().toString(),
 increment: <any>value as number
 };
 storedChanges[id] = storedChange;
}

It's my personal preference to use <T> for any casting and as T for non-
any castings. Though it has been used in languages like C#, the as
operator in TypeScript was originally introduced for compatibilities with
XML tags in JSX. You can also write <number><any>value or value as
any as number here if you like.

Don't forget to update the stored value. Just change = to += comparing to updating normal
data items:

if (hasOwnProperty.call(items, id)) {
 items[id].value += value;
} else {
 items[id] = {
 id,
 type,
 value
 };
}

That's not hard at all. But hey, we see branches.

We are writing branches all the time, but what are the differences between branches such as
if (type === 'foo') { ... } and branches such as if (item.timestamp >
lastTimestamp) { ... }? Let's keep this question in mind and move on.

With necessary information added by the update method, we can now update the
synchronize method of the client. But there is a flaw in practical scenarios: a
synchronizing request is sent to the server successfully, but the client failed to receive the
response from the server. In this situation, when update is called after a failed
synchronization, the increment is added to the might-be-synchronized change (identified by
its UID), which will be ignored by the server in future synchronizations. To fix this, we'll

The Challenge of Increasing Complexity

[54]

need to add a mark to all incremental changes that have started a synchronizing process,
and avoid accumulating these changes. Thus, we need to create another change for the
same data item.

This is actually a nice hint: as a change is about information that transforms a value from
one to another, several changes pending synchronization might eventually be applied to
one single data item:

interface ClientChangeList<T extends ClientChange> {
 type: DataType;
 changes: T[];
}

interface SyncingRequest {
 timestamp: number;
 changeLists: {
 [id: string]: ClientChangeList<ClientChange>;
 };
}

interface ClientIncrementChange extends ClientChange {
 type: 'increment';
 synced: boolean;
 uid: string;
 increment: number;
}

Now when we are trying to update an incremental data item, we need to get its last change
from the change list (if any) and see whether it has ever been synchronized. If it has ever
been involved in a synchronization, we create a new change instance. Otherwise, we'll just
accumulate the increment property value of the last change on the client side:

let changeList = storedChangeLists[id];
let changes = changeList.changes;
let lastChange =
 changes[changes.length - 1] as ClientIncrementChange;

if (lastChange.synced) {
 changes.push({
 synced: false,
 uid: Date.now().toString(),
 increment: <any>value as number
 } as ClientIncrementChange);
} else {
 lastChange.increment += <any>value as number;
}

The Challenge of Increasing Complexity

[55]

Or, if the change list does not exist yet, we'll need to set it up:

let changeList = {
 type: 'increment',
 changes: [
 {
 synced: false,
 uid: Date.now().toString(),
 increment: <any>value as number
 } as ClientIncrementChange
]
};

store.changeLists[id] = changeList;

We also need to update synchronize method to mark an incremental change as synced
before starting the synchronization with the server. But the implementation is for you to do
on your own.

Updating server side
Before we add the logic for handling incremental changes, we need to make server-side
code adapt to the new data structure:

for (let id of Object.keys(clientChangeLists)) {
 let clientChangeList = clientChangeLists[id];
 let type = clientChangeList.type;
 let clientChanges = clientChangeList.changes;
 if (type === 'value') {
 // ...
 } else if (type === 'increment') {
 // ...
 } else {
 throw new TypeError('Invalid data type');
 }
}

The change list of a normal data item will always contain one and only one change. Thus
we can easily migrate what we've written:

let clientChange = changes[0] as ClientValueChange<any>;

Now for incremental changes, we need to cumulatively apply possibly multiple changes in
a single change list to a data item:

let item = items[id];

The Challenge of Increasing Complexity

[56]

for (
 let clientChange
 of clientChanges as ClientIncrementChange[]
) {
 let {
 uid,
 increment
 } = clientChange;
 if (item.uids.indexOf(uid) < 0) {
 item.value += increment;
 item.uids.push(uid);
 }
}

But remember to take care of the timestamp or cases in which no item with a specified ID
exists:

let item: ServerDataItem<any>;

if (hasOwnProperty.call(items, id)) {
 item = items[id];
 item.timestamp = now;
} else {
 item = items[id] = {
 id,
 type,
 timestamp: now,
 uids: [],
 value: 0
 };
}

Without knowing the current value of an incremental data item on the client, we cannot
assure that the value is up to date. Previously, we decided whether to respond with a new
value by comparing the timestamp with the timestamp of the current synchronization, but
that does not work anymore for incremental changes.

A simple way to make this work is by deleting keys from clientChangeLists that still
need to be synchronized to the client. And when preparing responses, it can skip IDs that
are still in clientChangeLists:

if (
 item.timestamp > lastTimestamp &&
 !hasOwnProperty.call(clientChangeLists, id)
) {
 serverChanges[id] = item.value;
}

The Challenge of Increasing Complexity

[57]

Remember to add delete clientChangeLists[id]; for normal data items that did not
survive conflicts resolving as well.

Now we have implemented a synchronizing logic that can do quite a lot jobs for offline
applications. Earlier, I raised a question about increasing branches that do not look good.
But if you know your features are going to end there, or at least with limited changes, it's
not a bad implementation, although we'll soon cross the balance point, as meeting 80% of
the needs won't make us happy enough.

Supporting more conflict merging
Though we have met the needs of 80%, there is still a big chance that we might want some
extra features. For example, we want the ratio of the days marked as available by the user in
the current month, and the user should be able to add or remove days from the list. We can
achieve that in different ways, and we'll choose a simple way, as usual.

We are going to support synchronizing a set with operations such as add and remove, and
calculate the ratio on the client.

New data structures
To describe set changes, we need a new ClientChange type. When we are adding or
removing an element from a set, we only care about the last operation to the same element.
This means that the following:

If multiple operations are made to the same element, we only need to keep the1.
last one.
A time property is required for resolving conflicts.2.

So here are the new types:

enum SetOperation {
 add,
 remove
}

interface ClientSetChange extends ClientChange {
 element: number;
 time: number;
 operation: SetOperation;
}

The Challenge of Increasing Complexity

[58]

The set data stored on the server side is going to be a little different. We'll have a map with
the element (in the form of a string) as key, and a structure with operation and time
properties as the values:

interface ServerSetElementOperationInfo {
 operation: SetOperation;
 time: number;
}

Now we have enough information to resolve conflicts from multiple clients. And we can
generate the set by keys with a little help from the last operations done to the elements.

Updating client side
And now, the client-side update method gets a new part-time job: saving set changes just
like value and incremental changes. We need to update the method signature for this new
job (do not forget to add 'set' to DataType):

update(
 id: string,
 type: 'set',
 element: number,
 operation: SetOperation
): void;
update<T>(
 id: string,
 type: DataType,
 value: T,
 operation?: SetOperation
): void;

We also need to add another else if:

else if (type === 'set') {
 let element = <any>value as number;
 if (hasOwnProperty.call(storedChangeLists, id)) {
 // ...
 } else {
 // ...
 }
}

The Challenge of Increasing Complexity

[59]

If there are already operations made to this set, we need to find and remove that last
operation to the target element (if any). Then append a new change with the latest
operation:

let changeList = storedChangeLists[id];
let changes = changeList.changes as ClientSetChange[];

for (let i = 0; i < changes.length; i++) {
 let change = changes[i];
 if (change.element === element) {
 changes.splice(i, 1);
 break;
 }
}

changes.push({
 element,
 time: Date.now(),
 operation
});

If no change has been made since last successful synchronization, we'll need to create a new
change list for the latest operation:

let changeList: ClientChangeList<ClientSetChange> = {
 type: 'set',
 changes: [
 {
 element,
 time: Date.now(),
 operation
 }
]
};

storedChangeLists[id] = changeList;

And again, do not forget to update the stored value. This is a little bit more than just
assigning or accumulating the value, but it should still be quite easy to implement.

The Challenge of Increasing Complexity

[60]

Updating the server side
Just like we've done with the client, we need to add a corresponding else if branch to
merge changes of type 'set'. We are also deleting the ID from clientChangeLists
regardless of whether there are newer changes for a simpler implementation:

else if (type === 'set') {
 let item: ServerDataItem<{
 [element: string]: ServerSetElementOperationInfo;
 }>;
 delete clientChangeLists[id];
}

The conflict resolving logic is quite similar to what we do to the conflicts of normal values.
We just need to make comparisons to each element, and only keep the last operation.

And when preparing the response that will be synchronized to the client, we can generate
the set by putting together elements with add as their last operations:

if (item.type === 'set') {
 let operationInfos: {
 [element: string]: ServerSetElementOperationInfo;
 } = item.value;
 serverChanges[id] = Object
 .keys(operationInfos)
 .filter(element =>
 operationInfos[element].operation ===
 SetOperation.add
)
 .map(element => Number(element));
} else {
 serverChanges[id] = item.value;
}

Finally, we have a working mess (if it actually works). Cheers!

Things that go wrong while implementing
everything
When we started to add features, things were actually fine, if you are not obsessive about
pursuing the feeling of design. Then we sensed the code being a little awkward as we saw
more and more nested branches.

The Challenge of Increasing Complexity

[61]

So now it's time to answer the question, what are the differences between the two kinds of
branch we wrote? My understanding of why I am feeling awkward about the if (type
=== 'foo') { ... } branch is that it's not strongly related to the context. Comparing
timestamps, on the other hand, is a more natural part of a certain synchronizing process.

Again, I am not saying this is bad. But this gives us a hint about where we might start our
surgery from when we start to lose control (due to our limited brain capacity, it's just a
matter of complexity).

Piling up similar yet parallel processes
Most of the code in this chapter is to handle the process of synchronizing data between a
client and a server. To get adapted to new features, we just kept adding new things into
methods, such as update and synchronize.

You might have already found that most outlines of the logic can be, and should be, shared
across multiple data types. But we didn't do that.

If we look into what's written, the duplication is actually minor judging from the aspect of
code texts. Taking the update method of the client, for example, the logic of every branch
seems to differ. If finding abstractions has not become your built-in reaction, you might just
stop there. Or if you are not a fan of long functions, you might refactor the code by splitting
it into small ones of the same class. That could make things a little better, but far from
enough.

Data stores that are tremendously simplified
In the implementation, we were playing heavily and directly with ideal in-memory stores. It
would be nice if we could have a wrapper for it, and make the real store interchangeable.

This might not be the case for this implementation as it is based on extremely ideal and
simplified assumptions and requirements. But adding a wrapper could be a way to provide
useful helpers.

The Challenge of Increasing Complexity

[62]

Getting things right
So let's get out of the illusion of comparing code one character at a time and try to find an
abstraction that can be applied to updating all of these data types. There are two key points
of this abstraction that have already been mentioned in the previous section:

A change contains the information that can transform the value of an item from
one to another
Multiple changes could be generated or applied to one data item during a single
synchronization

Now, starting from changes, let's think about what happens when an update method of a
client is called.

Finding abstraction
Take a closer look to the method update of client:

For data of the 'value' type, first we create the change, including a new value,
and then update the change list to make the newly created change the only one.
After that, we update the value of data item.
For data of the 'increment' type, we add a change including the increment in
the change list; or if a change that has not be synchronized already exists, update
the increment of the existing change. And then, we update the value of the data
item.
Finally, for data of the 'set' type, we create a change reflecting the latest
operation. After adding the new change to the change list, we also remove
changes that are no longer necessary. Then we update the value of the data item.

Things are getting clear. Here is what's happening to these data types when update is
called:

Create new change.1.
Merge the new change to the change list.2.
Apply the new change to the data item.3.

Now it's even better. Every step is different for different data types, but different steps share
the same outline; what we need to do is to implement different strategies for different data
types.

The Challenge of Increasing Complexity

[63]

Implementing strategies
Doing all kind of changes with a single update function could be confusing. And before we
move on, let's split it into three different methods: update for normal values, increase for
incremental values, and addTo/removeFrom for sets.

Then we are going to create a new private method called applyChange, which will take the
change created by other methods and continue with step 2 and step 3. It accepts a strategy
object with two methods: append and apply:

interface ClientChangeStrategy<T extends ClientChange> {
 append(list: ClientChangeList<T>, change: T): void;
 apply(item: ClientDataItem<any>, change: T): void;
}

For a normal data item, the strategy object could be as follows:

let strategy: ClientChangeStrategy<ClientValueChange<any>> = {
 append(list, change) {
 list.changes = [change];
 },
 apply(item, change) {
 item.value = change.value;
 }
};

And for incremental data item, it takes a few more lines. First, the append method:

let changes = list.changes;
let lastChange = changes[changes.length];

if (!lastChange || lastChange.synced) {
 changes.push(change);
} else {
 lastChange.increment += change.increment;
}

The append method is followed by the apply method:

if (item.value === undefined) {
 item.value = change.increment;
} else {
 item.value += change.increment;
}

The Challenge of Increasing Complexity

[64]

Now in the applyChange method, we need to take care of the creation of non-existing
items and change lists, and invoke different append and apply methods based on different
data types.

The same technique can be applied to other processes. Though detailed processes that apply
to the client and the server differ, we can still write them together as modules.

Wrapping stores
We are going to make a lightweight wrapper around plain in-memory store objects with the
ability to read and write, taking the server-side store as an example:

export class ServerStore {
 private items: {
 [id: string]: ServerDataItem<any>;
 } = Object.create(null);
}

export class Server {
 constructor(
 public store: ServerStore
) { }
}

To fit our requirements, we need to implement get, set, and getAll methods (or even
better, a find method with conditions) for ServerStore:

get<T, TExtra extends ServerDataItemExtra>(id: string):
 ServerDataItem<T> & TExtra {
 return hasOwnProperty.call(this.items, id) ?
 this.items[id] as ServerDataItem<T> & TExtra : undefined;
}

set<T, TExtra extends ServerDataItemExtra>(
 id: string,
 item: ServerDataItem<T> & Textra
): void {
 this.items[id] = item;
}

getAll<T, TExtra extends ServerDataItemExtra>():
 (ServerDataItem<T> & TExtra)[] {
 let items = this.items;
 return Object
 .keys(items)

The Challenge of Increasing Complexity

[65]

 .map(id => items[id] as ServerDataItem<T> & TExtra);
}

You may have noticed from the interfaces and generics that I've also torn down
ServerDataItem into intersection types of the common part and extras.

Summary
In this chapter, we've been part of the evolution of a simplified yet reality-related project.
Starting with a simple code base that couldn't be wrong, we added a lot of features and
experienced the process of putting acceptable changes together and making the whole thing
a mess.

We were always trying to write readable code by either naming things nicely or adding
semantically necessary redundancies, but that won't help much as the complexity grows.

During the process, we've learned how offline synchronizing works. And with the help of
the most common design patterns, such as the Strategy Pattern, we managed to split the
project into small and controllable parts.

In the upcoming chapters, we'll catalog more useful design patterns with code examples in
TypeScript, and try to apply those design patterns to specific issues.

3
Creational Design Patterns

Creational design patterns in object-oriented programming are design patterns that are to
be applied during the instantiation of objects. In this chapter, we'll be talking about patterns
in this category.

Consider we are building a rocket, which has payload and one or more stages:

class Payload {
 weight: number;
}

class Engine {
 thrust: number;
}

class Stage {
 engines: Engine[];
}

In old-fashioned JavaScript, there are two major approaches to building such a rocket:

Constructor with new operator
Factory function

For the first approach, things could be like this:

function Rocket() {
 this.payload = {
 name: 'cargo ship'
 };
 this.stages = [
 {
 engines: [
 // ...

Creational Design Patterns

[67]

]
 }
];
}

var rocket = new Rocket();

And for the second approach, it could be like this:

function buildRocket() {
 var rocket = {};
 rocket.payload = {
 name: 'cargo ship'
 };
 rocket.stages = [
 {
 thrusters: [
 // ...
]
 }
];
 return rocket;
}

var rocket = buildRocket();

From a certain angle, they are doing pretty much the same thing, but semantically they
differ a lot. The constructor approach suggests a strong association between the building
process and the final product. The factory function, on the other hand, implies an interface
of its product and claims the ability to build such a product.

However, neither of the preceding implementations provides the flexibility to modularly
assemble rockets based on specific needs; this is what creational design patterns are about.

In this chapter, we'll cover the following creational patterns:

Factory method: By using abstract methods of a factory instead of the constructor
to build instances, this allows subclasses to change what's built by implementing
or overriding these methods.
Abstract factory: Defining the interface of compatible factories and their products.
Thus by changing the factory passed, we can change the family of built products.
Builder: Defining the steps of building complex objects, and changing what's built
either by changing the sequence of steps, or using a different builder
implementation.

Creational Design Patterns

[68]

Prototype: Creating objects by cloning parameterized prototypes. Thus by
replacing these prototypes, we may build different products.
Singleton: Ensuring only one instance (under a certain scope) will be created.

It is interesting to see that even though the factory function approach to creating objects in
JavaScript looks primitive, it does have parts in common with some patterns we are going
to talk about (although applied to different scopes).

Factory method
Under some scenarios, a class cannot predict exactly what objects it will create, or its
subclasses may want to create more specified versions of these objects. Then, the Factory
Method Pattern can be applied.

The following picture shows the possible structure of the Factory Method Pattern applied to
creating rockets:

A factory method is a method of a factory that builds objects. Take building rockets as an
example; a factory method could be a method that builds either the entire rocket or a single
component. One factory method might rely on other factory methods to build its target
object. For example, if we have a createRocket method under the Rocket class, it would
probably call factory methods like createStages and createPayload to get the necessary
components.

Creational Design Patterns

[69]

The Factory Method Pattern provides some flexibility upon reasonable complexity. It allows
extendable usage by implementing (or overriding) specific factory methods. Taking
createStages method, for example, we can create a one-stage rocket or a two-stage rocket
by providing different createStages method that return one or two stages respectively.

Participants
The participants of a typical Factory Method Pattern implementation include the following:

Product: Rocket

Define an abstract class or an interface of a rocket that will be created as
the product.

Concrete product: FreightRocket

Implement a specific rocket product.

Creator: RocketFactory

Define the optionally abstract factory class that creates products.

Concrete creator: FreightRocketFactory

Implement or overrides specific factory methods to build products on demand.

Pattern scope
The Factory Method Pattern decouples Rocket from the constructor implementation and
makes it possible for subclasses of a factory to change what's built accordingly. A concrete
creator still cares about what exactly its components are and how they are built. But the
implementation or overriding usually focuses more on each component, rather than the
entire product.

Implementation
Let's begin with building a simple one-stage rocket that carries a 0-weight payload as the
default implementation:

class RocketFactory {

Creational Design Patterns

[70]

 buildRocket(): Rocket { }
 createPayload(): Payload { }
 createStages(): Stage[] { }
}

We start with creating components. We will simply return a payload with 0 weight for the
factory method createPayload and one single stage with one single engine for the factory
method createStages:

createPayload(): Payload {
 return new Payload(0);
}

createStages(): Stage[] {
 let engine = new Engine(1000);
 let stage = new Stage([engine]);
 return [stage];
}

After implementing methods to create the components of a rocket, we are going to put them
together with the factory method buildRocket:

buildRocket(): Rocket {
 let rocket = new Rocket();
 let payload = this.createPayload();
 let stages = this.createStages();
 rocket.payload = payload;
 rocket.stages = stages;
 return rocket;
}

Now we have the blueprint of a simple rocket factory, yet with certain extensibilities. To
build a rocket (that does nothing so far), we just need to instantiate this very factory and call
its buildRocket method:

let rocketFactory = new RocketFactory();
let rocket = rocketFactory.buildRocket();

Next, we are going to build two-stage freight rockets that send satellites into orbit. Thus,
there are some differences compared to the basic factory implementation.

First, we have a different payload, satellites, instead of a 0-weight placeholder:

class Satellite extends Payload {
 constructor(
 public id: number
) {

Creational Design Patterns

[71]

 super(200);
 }
}

Second, we now have two stages, probably with different specifications. The first stage is
going to have four engines:

class FirstStage extends Stage {
 constructor() {
 super([
 new Engine(1000),
 new Engine(1000),
 new Engine(1000),
 new Engine(1000)
]);
 }
}

While the second stage has only one:

class SecondStage extends Stage {
 constructor() {
 super([
 new Engine(1000)
]);
 }
}

Now we have what this new freight rocket would look like in mind, let's extend the factory:

type FreightRocketStages = [FirstStage, SecondStage];

class FreightRocketFactory extends RocketFactory {
 createPayload(): Satellite { }
 createStages(): FreightRocketStages { }
}

Here we are using the type alias of a tuple to represent the stages sequence
of a freight rocket, namely the first and second stages. To find out more
about type aliases, please refer to h t t p s : / / w w w . t y p e s c r i p t l a n g . o r g / d o c

s / h a n d b o o k / a d v a n c e d - t y p e s . h t m l.

As we added the id property to Satellite, we might need a counter for each instance of
the factory, and then create every satellite with a unique ID:

nextSatelliteId = 0;

createPayload(): Satellite {

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html

Creational Design Patterns

[72]

 return new Satellite(this.nextSatelliteId++);
}

Let's move on and implement the createStages method that builds first and second stage
of the rocket:

createStages(): FreightRocketStages {
 return [
 new FirstStage(),
 new SecondStage()
];
}

Comparing to the original implementation, you may have noticed that we've automatically
decoupled specific stage building processes from assembling them into constructors of
different stages. It is also possible to apply another creational pattern for the initiation of
every stage if it helps.

Consequences
In the preceding implementation, the factory method buildRocket handles the outline of
the building steps. We were lucky to have the freight rocket in the same structure as the
very first rocket we had defined.

But that won't always happen. If we want to change the class of products (Rocket), we'll
have to override the entire buildRocket with everything else but the class name. This
looks frustrating but it can be solved, again, by decoupling the creation of a rocket instance
from the building process:

buildRocket(): Rocket {
 let rocket = this.createRocket();
 let payload = this.createPayload();
 let stages = this.createStages();
 rocket.payload = payload;
 rocket.stages = stages;
 return rocket;
}

createRocket(): Rocket {
 return new Rocket();
}

Thus we can change the rocket class by overriding the createRocket method. However,
the return type of the buildRocket of a subclass (for example, FreightRocketFactory)

Creational Design Patterns

[73]

is still Rocket instead of something like FreightRocket. But as the object created is
actually an instance of FreightRocket, it is valid to cast the type by type assertion:

let rocket = FreightRocketFactory.buildRocket() as FreightRocket;

The trade-off is a little type safety, but that can be eliminated using generics. Unfortunately,
in TypeScript what you get from a generic type argument is just a type without an actual
value. This means that we may need another level of abstraction or other patterns that can
use the help of type inference to make sure of everything.

The former option would lead us to the Abstract Factory Pattern.

Type safety could be one reason to consider when choosing a pattern
but usually, it will not be decisive. Please note we are not trying to switch
a pattern for this single reason, but just exploring.

Abstract Factory
The Abstract Factory Pattern usually defines the interfaces of a collection of factory
methods, without specifying concrete products. This allows an entire factory to be
replaceable, in order to produce different products following the same production outline:

Creational Design Patterns

[74]

The details of the products (components) are omitted from the diagram, but do notice that
these products belong to two parallel families: ExperimentalRocket and
FreightRocket.

Different from the Factory Method Pattern, the Abstract Factory Pattern extracts another
part called client that take cares of shaping the outline of the building process. This makes
the factory part focused more on producing each component.

Participants
The participants of a typical Abstract Factory Pattern implementation include the following:

Abstract factory: RocketFactory

Defines the industrial standards of a factory which provide interfaces for
manufacturing components or complex products.

Concrete factory: ExperimentalRocketFactory, FreightRocketFactory

Implements the interfaces defined by the abstract factory and builds concrete
products.

Abstract products: Rocket, Payload, Stage[]

Define the interfaces of the products the factories are going to build.

Concrete products: ExperimentalRocket/FreightRocket,
ExperimentalPayload/Satellite, and so on.

Presents actual products that are manufactured by a concrete factory.

Client:

Arranges the production process across factories (only if these factories
conform to industrial standards).

Creational Design Patterns

[75]

Pattern scope
Abstract Factory Pattern makes the abstraction on top of different concrete factories. At the
scope of a single factory or a single branch of factories, it just works like the Factory Method
Pattern. However, the highlight of this pattern is to make a whole family of products
interchangeable. A good example could be components of themes for a UI implementation.

Implementation
In the Abstract Factory Pattern, it is the client interacting with a concrete factory for
building integral products. However, the concrete class of products is decoupled from the
client during design time, while the client cares only about what a factory and its products
look like instead of what exactly they are.

Let's start by simplifying related classes to interfaces:

interface Payload {
 weight: number;
}

interface Stage {
 engines: Engine[];
}

interface Rocket {
 payload: Payload;
 stages: Stage[];
}

And of course the abstract factory itself is:

interface RocketFactory {
 createRocket(): Rocket;
 createPayload(): Payload;
 createStages(): Stage[];
}

The building steps are abstracted from the factory and put into the client, but we still need
to implement it anyway:

class Client {
 buildRocket(factory: RocketFactory): Rocket {
 let rocket = factory.createRocket();
 rocket.payload = factory.createPayload();
 rocket.stages = factory.createStages();

Creational Design Patterns

[76]

 return rocket;
 }
}

Now we have the same issue we previously had when we implemented the Factory Method
Pattern. As different concrete factories build different rockets, the class of the product
changes. However, now we have generics to the rescue.

First, we need a RocketFactory interface with a generic type parameter that describes a
concrete rocket class:

interface RocketFactory<T extends Rocket> {
 createRocket(): T;
 createPayload(): Payload;
 createStages(): Stage[];
}

And second, update the buildRocket method of the client to support generic factories:

 buildRocket<T extends Rocket>(
 factory: RocketFactory<T>
): T { }

Thus, with the help of the type system, we will have rocket type inferred based on the type
of a concrete factory, starting with ExperimentalRocket and
ExperimentalRocketFactory:

class ExperimentalRocket implements Rocket { }

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> { }

If we call the buildRocket method of a client with an instance of
ExperimentalRocketFactory, the return type will automatically be
ExperimentalRocket:

let client = new Client();
let factory = new ExperimentalRocketFactory();
let rocket = client.buildRocket(factory);

Before we can complete the implementation of the ExperimentalRocketFactory object,
we need to define concrete classes for the products of the family:

class ExperimentalPayload implements Payload {
 weight: number;
}

Creational Design Patterns

[77]

class ExperimentalRocketStage implements Stage {
 engines: Engine[];
}

class ExperimentalRocket implements Rocket {
 payload: ExperimentalPayload;
 stages: [ExperimentalRocketStage];
}

Trivial initializations of payload and stage are omitted for more compact
content. The same kinds of omission may be applied if they are not
necessary for this book.

And now we may define the factory methods of this concrete factory class:

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> {
 createRocket(): ExperimentalRocket {
 return new ExperimentalRocket();
 }
 createPayload(): ExperimentalPayload {
 return new ExperimentalPayload();
 }
 createStages(): [ExperimentalRocketStage] {
 return [new ExperimentalRocketStage()];
 }
}

Let's move on to another concrete factory that builds a freight rocket and products of its
family, starting with the rocket components:

class Satellite implements Payload {
 constructor(
 public id: number,
 public weight: number
) { }
}

class FreightRocketFirstStage implements Stage {
 engines: Engine[];
}

class FreightRocketSecondStage implements Stage {
 engines: Engine[];
}

type FreightRocketStages =

Creational Design Patterns

[78]

 [FreightRocketFirstStage, FreightRocketSecondStage];

Continue with the rocket itself:

class FreightRocket implements Rocket {
 payload: Satellite;
 stages: FreightRocketStages;
}

With the structures or classes of the freight rocket family defined, we are ready to
implement its factory:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
 nextSatelliteId = 0;
 createRocket(): FreightRocket {
 return new FreightRocket();
 }
 createPayload(): Satellite {
 return new Satellite(this.nextSatelliteId++, 100);
 }
 createStages(): FreightRocketStages {
 return [
 new FreightRocketFirstStage(),
 new FreightRocketSecondStage()
];
 }
}

Now we once again have two families of rockets and their factories, and we can use the
same client to build different rockets by passing different factories:

let client = new Client();

let experimentalRocketFactory = new ExperimentalRocketFactory();
let freightRocketFactory = new FreightRocketFactory();

let experimentalRocket =
 client.buildRocket(experimentalRocketFactory);

let freightRocket = client.buildRocket(freightRocketFactory);

Creational Design Patterns

[79]

Consequences
The Abstract Factory Pattern makes it easy and smooth to change the entire family of
products. This is the direct benefit brought by the factory level abstraction. As a
consequence, it also brings other benefits, as well as some disadvantages at the same time.

On the one hand, it provides better compatibility within the products in a specific family.
As the products built by a single factory are usually meant to work together, we can assume
that they tend to cooperate more easily.

But on the other hand, it relies on a common outline of the building process, although for a
well-abstracted building process, this won't always be an issue. We can also parameterize
factory methods on both concrete factories and the client to make the process more flexible.

Of course, an abstract factory does not have to be a pure interface or an abstract class with
no methods implemented. An implementation in practice should be decided based on
detailed context.

Although the Abstract Factory Pattern and Factory Method Pattern have abstractions of
different levels, what they encapsulate are similar. For building a product with multiple
components, the factories split the products into components to gain flexibility. However, a
fixed family of products and their internal components may not always satisfy the
requirements, and thus we may consider the Builder Pattern as another option.

Builder
While Factory Patterns expose the internal components (such as the payload and stages of a
rocket), the Builder Pattern encapsulates them by exposing only the building steps and
provides the final products directly. At the same time, the Builder Pattern also encapsulates
the internal structures of a product. This makes it possible for a more flexible abstraction
and implementation of building complex objects.

Creational Design Patterns

[80]

The Builder Pattern also introduces a new role called director, as shown in the following
diagram. It is quite like the client in the Abstract Factory Pattern, although it cares only
about build steps or pipelines:

Now the only constraint from RocketBuilder that applies to a product of its subclass is
the overall shape of a Rocket. This might not bring a lot of benefits with the Rocket
interface we previously defined, which exposes some details of the rocket that the clients
(by clients I mean those who want to send their satellites or other kinds of payload to space)
may not care about that much. For these clients, what they want to know might just be
which orbit the rocket is capable of sending their payloads to, rather than how many and
what stages this rocket has.

Participants
The participants of a typical Builder Pattern implementation include the following:

Builder: RocketBuilder

Defines the interface of a builder that builds products.

Concrete builder: FalconBuilder

Implements methods that build parts of the products, and keeps track of the
current building state.

Creational Design Patterns

[81]

Director

Defines the steps and collaborates with builders to build products.

Final product: Falcon

The product built by a builder.

Pattern scope
The Builder Pattern has a similar scope to the Abstract Factory Pattern, which extracts
abstraction from a complete collection of operations that will finally initiate the products.
Compared to the Abstract Factory Pattern, a builder in the Builder Pattern focuses more on
the building steps and the association between those steps, while the Abstract Factory
Pattern puts that part into the clients and makes its factory focus on producing components.

Implementation
As now we are assuming that stages are not the concern of the clients who want to buy
rockets to carry their payloads, we can remove the stages property from the general
Rocket interface:

interface Rocket {
 payload: Payload;
}

There is a rocket family called sounding rocket that sends probes to near space. And this
means we don't even need to have the concept of stages. SoundingRocket is going to have
only one engine property other than payload (which will be a Probe), and the only engine
will be a SolidRocketEngine:

class Probe implements Payload {
 weight: number;
}

class SolidRocketEngine extends Engine { }

class SoundingRocket implements Rocket {
 payload: Probe;
 engine: SolidRocketEngine;
}

Creational Design Patterns

[82]

But still we need rockets to send satellites, which usually use LiquidRocketEngine:

class LiquidRocketEngine extends Engine {
 fuelLevel = 0;
 refuel(level: number): void {
 this.fuelLevel = level;
 }
}

And we might want to have the corresponding LiquidRocketStage abstract class that
handles refuelling:

abstract class LiquidRocketStage implements Stage {
 engines: LiquidRocketEngine[] = [];
 refuel(level = 100): void {
 for (let engine of this.engines) {
 engine.refuel(level);
 }
 }
}

Now we can update FreightRocketFirstStage and FreightRocketSecondStage as
subclasses of LiquidRocketStage:

class FreightRocketFirstStage extends LiquidRocketStage {
 constructor(thrust: number) {
 super();
 let enginesNumber = 4;
 let singleEngineThrust = thrust / enginesNumber;
 for (let i = 0; i < enginesNumber; i++) {
 let engine =
 new LiquidRocketEngine(singleEngineThrust);
 this.engines.push(engine);
 }
 }
}

class FreightRocketSecondStage extends LiquidRocketStage {
 constructor(thrust: number) {
 super();
 this.engines.push(new LiquidRocketEngine(thrust));
 }
}

The FreightRocket will remain the same as it was:

type FreightRocketStages =
 [FreightRocketFirstStage, FreightRocketSecondStage];

Creational Design Patterns

[83]

class FreightRocket implements Rocket {
 payload: Satellite;
 stages = [] as FreightRocketStages;
}

And, of course, there is the builder. This time, we are going to use an abstract class that has
the builder partially implemented, with generics applied:

abstract class RocketBuilder<
 TRocket extends Rocket,
 TPayload extends Payload
> {
 createRocket(): void { }
 addPayload(payload: TPayload): void { }
 addStages(): void { }
 refuelRocket(): void { }
 abstract get rocket(): TRocket;
}

There's actually no abstract method in this abstract class. One of the
reasons is that specific steps might be optional to certain builders. By
implementing no-op methods, the subclasses can just leave the steps they
don't care about empty.

Here is the implementation of the Director class:

class Director {
 prepareRocket<
 TRocket extends Rocket,
 TPayload extends Payload
 >(
 builder: RocketBuilder<TRocket, TPayload>,
 payload: TPayload
): TRocket {
 builder.createRocket();
 builder.addPayload(payload);
 builder.addStages();
 builder.refuelRocket();
 return builder.rocket;
 }
}

Be cautious, without explicitly providing a building context, the builder
instance relies on the building pipelines being queued (either
synchronously or asynchronously). One way to avoid risk (especially with
asynchronous operations) is to initialize a builder instance every time you
prepare a rocket.

Creational Design Patterns

[84]

Now it's time to implement concrete builders, starting with SoundingRocketBuilder,
which builds a SoundingRocket with only one SolidRocketEngine:

class SoundingRocketBuilder
extends RocketBuilder<SoundingRocket, Probe> {
 private buildingRocket: SoundingRocket;
 createRocket(): void {
 this.buildingRocket = new SoundingRocket();
 }
 addPayload(probe: Probe): void {
 this.buildingRocket.payload = probe;
 }
 addStages(): void {
 let payload = this.buildingRocket.payload;
 this.buildingRocket.engine =
 new SolidRocketEngine(payload.weight);
 }
 get rocket(): SoundingRocket {
 return this.buildingRocket;
 }
}

There are several notable things in this implementation:

The addStages method relies on the previously added payload to add an
engine with the correct thrust specification.
The refuel method is not overridden (so it remains no-op) because a solid
rocket engine does not need to be refueled.

We've sensed a little about the context provided by a builder, and it could have a significant
influence on the result. For example, let's take a look at FreightRocketBuilder. It could
be similar to SoundingRocket if we don't take the addStages and refuel methods into
consideration:

class FreightRocketBuilder
extends RocketBuilder<FreightRocket, Satellite> {
 private buildingRocket: FreightRocket;
 createRocket(): void {
 this.buildingRocket = new FreightRocket();
 }
 addPayload(satellite: Satellite): void {
 this.buildingRocket.payload = satellite;
 }
 get rocket(): FreightRocket {
 return this.buildingRocket;
 }

Creational Design Patterns

[85]

}

Assume that a payload that weighs less than 1000 takes only one stage to send into space,
while payloads weighing more take two or more stages:

addStages(): void {
 let rocket = this.buildingRocket;
 let payload = rocket.payload;
 let stages = rocket.stages;
 stages[0] = new FreightRocketFirstStage(payload.weight * 4);
 if (payload.weight >= FreightRocketBuilder.oneStageMax) {
 stages[1] = FreightRocketSecondStage(payload.weight);
 }
}

static oneStageMax = 1000;

When it comes to refueling, we can even decide how much to refuel based on the weight of
the payloads:

refuel(): void {
 let rocket = this.buildingRocket;
 let payload = rocket.payload;
 let stages = rocket.stages;
 let oneMax = FreightRocketBuilder.oneStageMax;
 let twoMax = FreightRocketBuilder.twoStagesMax;
 let weight = payload.weight;
 stages[0].refuel(Math.min(weight, oneMax) / oneMax * 100);
 if (weight >= oneMax) {
 stages[1]
 .refuel((weight - oneMax) / (twoMax - oneMax) * 100);
 }
}

static oneStageMax = 1000;
static twoStagesMax = 2000;

Now we can prepare different rockets ready to launch, with different builders:

let director = new Director();

let soundingRocketBuilder = new SoundingRocketBuilder();
let probe = new Probe();
let soundingRocket
 = director.prepareRocket(soundingRocketBuilder, probe);

let freightRocketBuilder = new FreightRocketBuilder();
let satellite = new Satellite(0, 1200);

Creational Design Patterns

[86]

let freightRocket
 = director.prepareRocket(freightRocketBuilder, satellite);

Consequences
As the Builder Pattern takes greater control of the product structures and how the building
steps influence each other, it provides the maximum flexibility by subclassing the builder
itself, without changing the director (which plays a similar role to a client in the Abstract
Factory Pattern).

Prototype
As JavaScript is a prototype-based programming language, you might be using prototype
related patterns all the time without knowing it.

We've talked about an example in the Abstract Factory Pattern, and part of the code is like
this:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
 createRocket(): FreightRocket {
 return new FreightRocket();
 }
}

Sometimes we may need to add a subclass just for changing the class name while
performing the same new operation. Instances of a single class usually share the same
methods and properties, so we can clone one existing instance for new instances to be
created. That is the concept of a prototype.

But in JavaScript, with the prototype concept built-in, new Constructor() does basically
what a clone method would do. So actually a constructor can play the role of a concrete
factory in some way:

interface Constructor<T> {
 new (): T;
}

function createFancyObject<T>(constructor: Constructor<T>): T {
 return new constructor();
}

www.allitebooks.com

http://www.allitebooks.org

Creational Design Patterns

[87]

With this privilege, we can parameterize product or component classes as part of other
patterns and make creation even more flexible.

There is something that could easily be ignored when talking about the Prototype Pattern in
JavaScript: cloning with the state. With the class syntax sugar introduced in ES6, which
hides the prototype modifications, we may occasionally forget that we can actually modify
prototypes directly:

class Base {
 state: number;
}

let base = new Base();
base.state = 0;

class Derived extends Base { }
Derived.prototype = base;

let derived = new Derived();

Now, the derived object will keep the state of the base object. This could be useful when
you want to create copies of a specific instance, but keep in mind that properties in a
prototype of these copies are not the own properties of these cloned objects.

Singleton
There are scenarios in which only one instance of the specific class should ever exist, and
that leads to Singleton Pattern.

Basic implementations
The simplest singleton in JavaScript is an object literal; it provides a quick and cheap way to
create a unique object:

const singleton = {
 foo(): void {
 console.log('bar');
 }
};

Creational Design Patterns

[88]

But sometimes we might want private variables:

const singleton = (() => {
 let bar = 'bar';
 return {
 foo(): void {
 console.log(bar);
 }
 };
})();

Or we want to take the advantage of an anonymous constructor function or class expression
in ES6:

const singleton = new class {
 private _bar = 'bar';
 foo(): void {
 console.log(this._bar);
 }
} ();

Remember that the private modifier only has an effect at compile time,
and simply disappears after being compiled to JavaScript (although of
course its accessibility will be kept in .d.ts).

However, it is possible to have the requirements for creating new instances of “singletons”
sometimes. Thus a normal class will still be helpful:

class Singleton {
 bar = 'bar';
 foo(): void {
 console.log(bar);
 }
 private static _default: Singleton;

 static get default(): Singleton {
 if (!Singleton._default) {
 Singleton._default = new Singleton();
 }

 return Singleton._default;
 }
}

Another benefit brought by this approach is lazy initialization: the object only gets
initialized when it gets accessed the first time.

Creational Design Patterns

[89]

Conditional singletons
Sometimes we might want to get “singletons” based on certain conditions. For example,
every country usually has only one capital city, thus a capital city could be treated as a
singleton under the scope of the specific country.

The condition could also be the result of context rather than explicit arguments. Assuming
we have a class Environment and its derived classes, WindowsEnvironment and
UnixEnvironment, we would like to access the correct environment singleton across
platforms by using Environment.default and apparently, a selection could be made by
the default getter.

For more complex scenarios, we might want a registration-based implementation to make it
extendable.

Summary
In this chapter, we've talked about several important creational design patterns including
the Factory Method, Abstract Factory, Builder, Prototype, and Singleton.

Starting with the Factory Method Pattern, which provides flexibility with limited
complexity, we also explored the Abstract Factory Pattern, the Builder Pattern and the
Prototype Pattern, which share similar levels of abstraction but focus on different aspects.
These patterns have more flexibility than the Factory Method Pattern, but are more complex
at the same time. With the knowledge of the idea behind each of the patterns, we should be
able to choose and apply a pattern accordingly.

While comparing the differences, we also found many things in common between different
creational patterns. These patterns are unlikely to be isolated from others and some of them
can even collaborate with or complete each other.

In the next chapter, we'll continue to discuss structural patterns that help to form large
objects with complex structures.

4
Structural Design Patterns

While creational patterns play the part of flexibly creating objects, structural patterns, on the
other hand, are patterns about composing objects. In this chapter, we are going to talk about
structural patterns that fit different scenarios.

If we take a closer look at structural patterns, they can be divided into structural class
patterns and structural object patterns. Structural class patterns are patterns that play with
“interested parties” themselves, while structural object patterns are patterns that weave
pieces together (like Composite Pattern). These two kinds of structural patterns
complement each other to some degree.

Here are the patterns we'll walk through in this chapter:

Composite: Builds tree-like structures using primitive and composite objects. A
good example would be the DOM tree that forms a complete page.
Decorator: Adds functionality to classes or objects dynamically.
Adapter: Provides a general interface and work with different adaptees by
implementing different concrete adapters. Consider providing different database
choices for a single content management system.
Bridge: Decouples the abstraction from its implementation, and make both of
them interchangeable.
Façade: Provides a simplified interface for the combination of complex
subsystems.
Flyweight: Shares stateless objects that are being used many times to improve
memory efficiency and performance.
Proxy: Acts as the surrogate that takes extra responsibilities when accessing
objects it manages.

Structural Design Patterns

[91]

Composite Pattern
Objects under the same class could vary from their properties or even specific subclasses,
but a complex object can have more than just normal properties. Taking DOM elements, for
example, all the elements are instances of class Node. These nodes form tree structures to
represent different pages, but every node in these trees is complete and uniform compared
to the node at the root:

<html>
 <head>
 <title>TypeScript</title>
 </head>
 <body>
 <h1>TypeScript</h1>

 </body>
</html>

The preceding HTML represents a DOM structure like this:

All of the preceding objects are instances of Node, they implement the interface of a
component in Composite Pattern. Some of these nodes like HTML elements (except for
HTMLImageElement) in this example have child nodes (components) while others don't.

Structural Design Patterns

[92]

Participants
The participants of Composite Pattern implementation include:

Component: Node

Defines the interface and implement the default behavior for objects of the
composite. It should also include an interface to access and manage the child
components of an instance, and optionally a reference to its parent.

Composite: Includes some HTML elements, like HTMLHeadElement and
HTMLBodyElement

Stores child components and implements related operations, and of course its
own behaviors.

Leaf: TextNode, HTMLImageElement

Defines behaviors of a primitive component.

Client:

Manipulates the composite and its components.

Pattern scope
Composite Pattern applies when objects can and should be abstracted recursively as
components that form tree structures. Usually, it would be a natural choice when a certain
structure needs to be formed as a tree, such as trees of view components, abstract syntax
trees, or trees that represent file structures.

Implementation
We are going to create a composite that represents simple file structures and has limited
kinds of components.

First of all, let's import related node modules:

import * as Path from 'path';
import * as FS from 'fs';

Structural Design Patterns

[93]

Module path and fs are built-in modules of Node.js, please refer to
Node.js documentation for more information: h t t p s : / / n o d e j s . o r g / a p i /.

It is my personal preference to have the first letter of a namespace (if it's
not a function at the same time) in uppercase, which reduces the chance of
conflicts with local variables. But a more popular naming style for
namespace in JavaScript does not.

Now we need to make abstraction of the components, say FileSystemObject:

abstract class FileSystemObject {
 constructor(
 public path: string,
 public parent?: FileSystemObject
) { }

 get basename(): string {
 return Path.basename(this.path);
 }
}

We are using abstract class because we are not expecting to use FileSystemObject
directly. An optional parent property is defined to allow us to visit the upper component
of a specific object. And the basename property is added as a helper for getting the
basename of the path.

The FileSystemObject is expected to have subclasses, FolderObject and FileObject.
For FolderObject, which is a composite that may contain other folders and files, we are
going to add an items property (getter) that returns other FileSystemObject it contains:

class FolderObject extends FileSystemObject {
 items: FileSystemObject[];

 constructor(path: string, parent?: FileSystemObject) {
 super(path, parent);
 }
}

We can initialize the items property in the constructor with actual files and folders
existing at given path:

this.items = FS
 .readdirSync(this.path)
 .map(path => {

https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/

Structural Design Patterns

[94]

 let stats = FS.statSync(path);

 if (stats.isFile()) {
 return new FileObject(path, this);
 } else if (stats.isDirectory()) {
 return new FolderObject(path, this);
 } else {
 throw new Error('Not supported');
 }
 });

You may have noticed we are forming items with different kinds of objects, and we are
also passing this as the parent of newly created child components.

And for FileObject, we'll add a simple readAll method that reads all bytes of the file:

class FileObject extends FileSystemObject {
 readAll(): Buffer {
 return FS.readFileSync(this.path);
 }
}

Currently, we are reading the child items inside a folder from the actual filesystem when a
folder object gets initiated. This might not be necessary if we want to access this structure
on demand. We may actually create a getter that calls readdir only when it's accessed,
thus the object would act like a proxy to the real filesystem.

Consequences
Both the primitive object and composite object in Composite Pattern share the component
interface, which makes it easy for developers to build a composite structure with fewer
things to remember.

It also enables the possibility of using markup languages like XML and HTML to represent
a really complex object with extreme flexibility. Composite Pattern can also make the
rendering easier by having components rendered recursively.

As most components are compatible with having child components or being child
components of their parents themselves, we can easily create new components that work
great with existing ones.

Structural Design Patterns

[95]

Decorator Pattern
Decorator Pattern adds new functionality to an object dynamically, usually without
compromising the original features. The word decorator in Decorator Pattern does share
something with the word decorator in the ES-next decorator syntax, but they are not exactly
the same. Classical Decorator Pattern as a phrase would differ even more.

The classical Decorator Pattern works with a composite, and the brief idea is to create
decorators as components that do the decorating work. As composite objects are usually
processed recursively, the decorator components would get processed automatically. So it
becomes your choice to decide what it does.

The inheritance hierarchy could be like the following structure shown:

The decorators are applied recursively like this:

Structural Design Patterns

[96]

There are two prerequisites for the decorators to work correctly: the awareness of context or
object that a decorator is decorating, and the ability of the decorators being applied. The
Composite Pattern can easily create structures that satisfy those two prerequisites:

The decorator knows what it decorates as the component property
The decorator gets applied when it is rendered recursively

However, it doesn't really need to take a structure like a composite to gain the benefits from
Decorator Pattern in JavaScript. As JavaScript is a dynamic language, if you can get your
decorators called, you may add whatever you want to an object.

Taking method log under console object as an example, if we want a timestamp before
every log, we can simply replace the log function with a wrapper that has the timestamp
prefixed:

const _log = console.log;
console.log = function () {
 let timestamp = `[${new Date().toTimeString()}]`;
 return _log.apply(this, [timestamp, ...arguments]);
};

Certainly, this example has little to do with the classical Decorator Pattern, but it enables a
different way for this pattern to be done in JavaScript. Especially with the help of new
decorator syntax:

class Target {
 @decorator
 method() {
 // ...
 }
}

TypeScript provides the decorator syntax transformation as an
experimental feature. To learn more about decorator syntax, please check
out the following link: h t t p : / / w w w . t y p e s c r i p t l a n g . o r g / d o c s / h a n d b o o k

/ d e c o r a t o r s . h t m l.

Participants
The participants of classical Decorator Pattern implementation include:

Component: UIComponent

Defines the interface of the objects that can be decorated.

http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html

Structural Design Patterns

[97]

ConcreteComponent: TextComponent

Defines additional functionalities of the concrete component.

Decorator: Decorator

Defines a reference to the component to be decorated, and manages the
context. Conforms the interface of a component with proper behaviors.

ConcreteDecorator: ColorDecorator, FontDecorator

Defines additional features and exposes API if necessary.

Pattern scope
Decorator Pattern usually cares about objects, but as JavaScript is prototype-based,
decorators would work well with the classes of objects through their prototypes.

The classical implementation of Decorator Pattern could have much in common with other
patterns we are going to talk about later, while the function one seems to share less.

Implementation
In this part, we'll talk about two implementations of Decorator Pattern. The first one would
be classical Decorator Pattern that decorates the target by wrapping with new classes that
conform to the interface of UIComponent. The second one would be decorators written in
new decorator syntax that processes target objects.

Classical decorators
Let's get started by defining the outline of objects to be decorated. First, we'll have the
UIComponent as an abstract class, defining its abstract function draw:

abstract class UIComponent {
 abstract draw(): void;
}

Structural Design Patterns

[98]

Then a TextComponent that extends the UIComponent, as well as its text contents of class
Text:

class Text {
 content: string;

 setColor(color: string): void { }
 setFont(font: string): void { }

 draw(): void { }
}

class TextComponent extends UIComponent {
 texts: Text[];

 draw(): void {
 for (let text of this.texts) {
 text.draw();
 }
 }
}

What's next is to define the interface of decorators to decorate objects that are instances of
class TextComponent:

class Decorator extends UIComponent {
 constructor(
 public component: TextComponent
) {
 super();
 }

 get texts(): Text[] {
 return this.component.texts;
 }

 draw(): void {
 this.component.draw();
 }
}

Now we have everything for concrete decorators. In this example, ColorDecorator and
FontDecorator look similar:

class ColorDecorator extends Decorator {
 constructor(
 component: TextComponent,
 public color: string

Structural Design Patterns

[99]

) {
 super(component);
 }

 draw(): void {
 for (let text of this.texts) {
 text.setColor(this.color);
 }

 super.draw();
 }
}

class FontDecorator extends Decorator {
 constructor(
 component: TextComponent,
 public font: string
) {
 super(component);
 }

 draw(): void {
 for (let text of this.texts) {
 text.setFont(this.font);
 }

 super.draw();
 }
}

In the implementation just described, this.texts in draw method calls
the getter defined on class Decorator. As this in that context would
ideally be an instance of class ColorDecorator or FontDecorator; the
texts it accesses would finally be the array in its component property.

This could be even more interesting or confusing if we have nested
decorators like we will soon. Try to draw a schematic diagram if it
confuses you later.

Now it's time to actually assemble them:

let decoratedComponent = new ColorDecorator(
 new FontDecorator(
 new TextComponent(),
 'sans-serif'
),

Structural Design Patterns

[100]

 'black'
);

The order of nesting decorators does not matter in this example. As either
ColorDecorator or FontDecorator is a valid UIComponent, they can be easily dropped
in and replace previous TextComponent.

Decorators with ES-next syntax
There is a limitation with classical Decorator Pattern that can be pointed out directly via its
nesting form of decorating. That applies to ES-next decorators as well. Take a look at the
following example:

class Foo {
 @prefix
 @suffix
 getContent(): string {
 return '...';
 }
}

What follows the @ character is an expression that evaluates to a decorator.
While a decorator is a function that processes target objects, we usually
use higher-order functions to parameterize a decorator.

We now have two decorators prefix and suffix decorating the getContent method. It
seems that they are just parallel at first glance, but if we are going to add a prefix and suffix
onto the content returned, like what the name suggests, the procedure would actually be
recursive rather than parallel just like the classical implementation.

To make decorators cooperate with others as we'd expect, we need to handle things
carefully:

function prefix(
 target: Object,
 name: string,
 descriptor: PropertyDescriptor
): PropertyDescriptor {
 let method = descriptor.value as Function;

 if (typeof method !== 'function') {
 throw new Error('Expecting decorating a method');
 }

Structural Design Patterns

[101]

 return {
 value: function () {
 return '[prefix] ' + method.apply(this, arguments);
 },
 enumerable: descriptor.enumerable,
 configurable: descriptor.configurable,
 writable: descriptor.writable
 };
}

In current ECMAScript decorator proposal, when decorating a method or
property (usually with getter or setter), you will have the third argument
passed in as the property descriptor.

Check out the following link for more information about property
descriptors: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r

i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / O b j e c t / d e f i n e P r o p e r t y.

The suffix decorator would be just like the prefix decorator. So I'll save the code lines
here.

Consequences
The key to the Decorator Pattern is being able to add functionalities dynamically, and
decorators are usually expected to play nice with each other. Those expectations of
Decorator Pattern make it really flexible to form a customized object. However, it would be
hard for certain types of decorators to actually work well together.

Consider decorating an object with multiple decorators just like the second example of
implementation, would the decorating order matter? Or should the decorating order
matter?

A properly written decorator should always work no matter where it is in the decorators
list. And it's usually preferred that the decorated target behaves almost the same with
decorators decorated in different orders.

Adapter Pattern
Adapter Pattern connects existing classes or objects with another existing client. It makes
classes that are not designed to work together possible to cooperate with each other.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

Structural Design Patterns

[102]

An adapter could be either a class adapter or an object adapter. A class adapter extends the
adaptee class and exposes extra APIs that would work with the client. An object adapter, on
the other hand, does not extend the adaptee class. Instead, it stores the adaptee as a
dependency.

The class adapter is useful when you need to access protected methods or properties of the
adaptee class. However, it also has some restrictions when it comes to the JavaScript world:

The adaptee class needs to be extendable
If the client target is an abstract class other than pure interface, you can't extend
the adaptee class and the client target with the same adapter class without a mixin
A single class with two sets of methods and properties could be confusing

Due to those limitations, we are going to talk more about object adapters. Taking browser-
side storage for example, we'll assume we have a client working with storage objects that
have both methods get and set with correct signatures (for example, a storage that stores
data online through AJAX). Now we want the client to work with IndexedDB for faster
response and offline usage; we'll need to create an adapter for IndexedDB that gets and sets
data:

We are going to use Promise for receiving results or errors of asynchronous operations. See
the following link for more information if you are not yet familiar with Promise: h t t p s : / / d
e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / P r o m

i s e.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Structural Design Patterns

[103]

Participants
The participants of Adapter Pattern include:

Target: Storage

Defines the interface of existing targets that works with client

Adaptee: IndexedDB

The implementation that is not designed to work with the client

Adapter: IndexedDBStorage

Conforms the interface of target and interacts with adaptee

Client.

Manipulates the target

Pattern scope
Adapter Pattern can be applied when the existing client class is not designed to work with
the existing adaptees. It focuses on the unique adapter part when applying to different
combinations of clients and adaptees.

Implementation
Start with the Storage interface:

interface Storage {
 get<T>(key: string): Promise<T>;
 set<T>(key: string, value: T): Promise<void>;
}

We defined the get method with generic, so that if we neither specify the
generic type, nor cast the value type of a returned Promise, the type of the
value would be {}. This would probably fail following type checking.

Structural Design Patterns

[104]

With the help of examples found on MDN, we can now set up the IndexedDB adapter. Visit
 IndexedDBStorage: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / A P I / I n d e x e d D B

_ A P I / U s i n g _ I n d e x e d D B.

The creation of IndexedDB instances is asynchronous. We could put the opening operation
inside a get or set method so the database can be opened on demand. But for now, let's
make it easier by creating an instance of IndexedDBStorage that has a database instance
which is already opened.

However, constructors usually don't have asynchronous code. Even if they do, it cannot
apply changes to the instance before completing the construction. Fortunately, Factory
Method Pattern works well with asynchronous initiation:

class IndexedDBStorage implements Storage {
 constructor(
 public db: IDBDatabase,
 public storeName = 'default'
) { }

 open(name: string): Promise<IndexedDBStorage> {
 return new Promise<IndexedDBStorage>(
 (resolve, reject) => {
 let request = indexedDB.open(name);
 // ...
 });
 }
}

Inside the Promise resolver of method open, we'll get the asynchronous work done:

let request = indexedDB.open(name);

request.onsuccess = event => {
 let db = request.result as IDBDatabase;
 let storage = new IndexedDBStorage(db);
 resolve(storage);
};

request.onerror = event => {
 reject(request.error);
};

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

Structural Design Patterns

[105]

Now when we are accessing an instance of IndexedDBStorage, we can assume it has an
opened database and is ready to make queries. To make changes or to get values from the
database, we need to create a transaction. Here's how:

get<T>(key: string): Promise<T> {
 return new Promise<T>((resolve, reject) => {
 let transaction = this.db.transaction(this.storeName);
 let store = transaction.objectStore(this.storeName);

 let request = store.get(key);

 request.onsuccess = event => {
 resolve(request.result);
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
}

Method set is similar. But while the transaction is by default read-only, we need to
explicitly specify 'readwrite' mode.

set<T>(key: string, value: T): Promise<void> {
 return new Promise<void>((resolve, reject) => {
 let transaction =
 this.db.transaction(this.storeName, 'readwrite');
 let store = transaction.objectStore(this.storeName);

 let request = store.put(value, key);

 request.onsuccess = event => {
 resolve();
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
}

And now we can have a drop-in replacement for the previous storage used by the client.

Structural Design Patterns

[106]

Consequences
By applying Adapter Pattern, we can fill the gap between classes that originally would not
work together. In this situation, Adapter Pattern is quite a straightforward solution that
might come to mind.

But in other scenarios like a debugger adapter for debugging extensions of an IDE, the
implementation of Adapter Pattern could be more challenging.

Bridge Pattern
Bridge Pattern decouples the abstraction manipulated by clients from functional
implementations and makes it possible to add or replace these abstractions and
implementations easily.

Take a set of cross-API UI elements as an example:

We have the abstraction UIElement that can access different implementations of
UIToolkit for creating different UI based on either SVG or canvas. In the preceding
structure, the bridge is the connection between UIElement and UIToolkit.

Structural Design Patterns

[107]

Participants
The participants of Bridge Pattern include:

Abstraction: UIElement

Defines the interface of objects to be manipulated by the client and stores the
reference to its implementer.

Refined abstraction: TextElement, ImageElement

Extends abstraction with specialized behaviors.

Implementer: UIToolkit

Defines the interface of a general implementer that will eventually carry out
the operations defined in abstractions. The implementer usually cares only
about basic operations while the abstraction will handle high-level
operations.

Concrete implementer: SVGToolkit, CanvasToolkit

Implements the implementer interface and manipulates low-level APIs.

Pattern scope
Although having abstraction and implementer decoupled provides Bridge Pattern with the
ability to work with several abstractions and implementers, most of the time, bridge
patterns work only with a single implementer.

If you take a closer look, you will find Bridge Pattern is extremely similar to Adapter
Pattern. However, while Adapter Pattern tries to make existing classes cooperate and
focuses on the adapters part, Bridge Pattern foresees the divergences and provides a well-
thought-out and universal interface for its abstractions that play the part of adapters.

Implementation
A working implementation could be non-trivial in the example we are talking about. But we
can still sketch out the skeleton easily.

Structural Design Patterns

[108]

Start with implementer UIToolkit and abstraction UIElement that are directly related to
the bridge concept:

interface UIToolkit {
 drawBorder(): void;
 drawImage(src: string): void;
 drawText(text: string): void;
}

abstract class UIElement {
 constructor(
 public toolkit: UIToolkit
) { }

 abstract render(): void;
}

And now we can extend UIElement for refined abstractions with different behaviors. First
the TextElement class:

class TextElement extends UIElement {
 constructor(
 public text: string,
 toolkit: UIToolkit
) {
 super(toolkit);
 }

 render(): void {
 this.toolkit.drawText(this.text);
 }
}

And the ImageElement class with similar code:

class ImageElement extends UIElement {
 constructor(
 public src: string,
 toolkit: UIToolkit
) {
 super(toolkit);
 }

 render(): void {
 this.toolkit.drawImage(this.src);
 }
}

Structural Design Patterns

[109]

By creating concrete UIToolkit subclasses, we can manage to make everything together
with the client. But as it could lead to hard work we would not want to touch now, we'll
skip it by using a variable pointing to undefined in this example:

let toolkit: UIToolkit;

let imageElement = new ImageElement('foo.jpg', toolkit);
let textElement = new TextElement('bar', toolkit);

imageElement.render();
textElement.render();

In the real world, the render part could also be a heavy lift. But as it's coded at a relatively
higher-level, it tortures you in a different way.

Consequences
Despite having completely different names for the abstraction (UIElement) in the example
above and the adapter interface (Storage), they play similar roles in a static combination.

However, as we mentioned in the pattern scope section, the intentions of Bridge Pattern and
Adapter Pattern differ.

By decoupling the abstraction and implementer, Bridge Pattern brings great extensibility to
the system. The client does not need to know about the implementation details, and this
helps to build more stable systems as it forms a healthier dependency structure.

Another bonus that might be brought by Bridge Pattern is that, with a properly configured
build process, it can reduce compilation time as the compiler does not need to know
information on the other end of the bridge when changes are made to a refined abstraction
or concrete implementer.

Structural Design Patterns

[110]

Façade Pattern
The Façade Pattern organizes subsystems and provides a unified higher-level interface. An
example that might be familiar to you is a modular system. In JavaScript (and of course
TypeScript), people use modules to organize code. A modular system makes projects easier
to maintain, as a clean project structure can help reveal the interconnections among
different parts of the project.

It is common that one project gets referenced by others, but obviously the project that
references other projects doesn't and shouldn't care much about the inner structures of its
dependencies. Thus a façade can be introduced for a dependency project to provide a
higher-level API and expose what really matters to its dependents.

Take a robot as an example. People who build a robot and its components will need to
control every part separately and let them cooperate at the same time. However, people
who want to use this robot would only need to send simple commands like “walk” and
“jump”.

For the most flexible usage, the robot “SDK” can provide classes like MotionController,
FeedbackController, Thigh, Shank, Foot and so on. Possibly like the following image
shows:

Structural Design Patterns

[111]

But certainly, most of the people who want to control or program this robot do not want to
know as many details as this. What they really want is not a fancy tool box with everything
inbox, but just an integral robot that follows their commands. Thus the robot “SDK” can
actually provide a façade that controls the inner pieces and exposes much simpler APIs:

Unfortunately, Façade Pattern leaves us an open question of how to design the façade API
and subsystems. Answering this question properly is not easy work.

Participants
The participants of a Façade Pattern are relatively simple when it comes to their categories:

Façade: Robot

Defines a set of higher-level interfaces, and makes subsystems cooperate.

Subsystems: MotionController, FeedbackController, Thigh, Shank and
Foot

Implements their own functionalities and communicates internally with
other subsystems if necessary. Subsystems are dependencies of a façade, and
they do not depend on the façade.

Structural Design Patterns

[112]

Pattern scope
Façades usually act as junctions that connect a higher-level system and its subsystems. The
key to the Façade Pattern is to draw a line between what a dependent should or shouldn't
care about of its dependencies.

Implementation
Consider putting up a robot with its left and right legs, we can actually add another
abstraction layer called Leg that manages Thigh, Shank , and Foot. If we are going to
separate motion and feedback controllers to different legs respectively, we may also add
those two as part of the Leg:

class Leg {
 thigh: Thigh;
 shank: Shank;
 foot: Foot;

 motionController: MotionController;
 feedbackController: FeedbackController;
}

Before we add more details to Leg, let's first define MotionController and
FeedbackController .

The MotionController is supposed to control a whole leg based on a value or a set of
values. Here we are simplifying that as a single angle for not being distracted by this
impossible robot:

class MotionController {
 constructor(
 public leg: Leg
) { }

 setAngle(angle: number): void {
 let {
 thigh,
 shank,
 foot
 } = this.leg;

 // ...
 }
}

Structural Design Patterns

[113]

And the FeedbackController is supposed to be an instance of EventEmitter that
reports the state changes or useful events:

import { EventEmitter } from 'events';

class FeedbackController extends EventEmitter {
 constructor(
 public foot: Foot
) {
 super();
 }
}

Now we can make class Leg relatively complete:

class Leg {
 thigh = new Thigh();
 shank = new Shank();
 foot = new Foot();

 motionController: MotionController;
 feedbackController: FeedbackController;

 constructor() {
 this.motionController =
 new MotionController(this);
 this.feedbackController =
 new FeedbackController(this.foot);

 this.feedbackController.on('touch', () => {
 // ...
 });
 }
}

Let's put two legs together to sketch the skeleton of a robot:

class Robot {
 leftLegMotion: MotionController;
 rightLegMotion: MotionController;

 leftFootFeedback: FeedbackController;
 rightFootFeedback: FeedbackController;

 walk(steps: number): void { }
 jump(strength: number): void { }
}

Structural Design Patterns

[114]

I'm omitting the definition of classes Thigh, Shank , and Foot as we are not actually going
to walk the robot. Now for a user that only wants to walk or jump a robot via simple API,
they can make it via the Robot object that has everything connected.

Consequences
Façade Pattern loosens the coupling between client and subsystems. Though it does not
decouple them completely as you will probably still need to work with objects defined in
subsystems.

Façades usually forward operations from client to proper subsystems or even do heavy
work to make them work together.

With the help of Façade Pattern, the system and the relationship and structure within the
system can stay clean and intuitive.

Flyweight Pattern
A flyweight in Flyweight Pattern is a stateless object that can be shared across objects or
maybe classes many times. Obviously, that suggests Flyweight Pattern is a pattern about
memory efficiency and maybe performance if the construction of objects is expensive.

Taking drawing snowflakes as an example. Despite real snowflakes being different to each
other, when we are trying to draw them onto canvas, we usually have a limited number of
styles. However, by adding properties like sizes and transformations, we can create a
beautiful snow scene with limited snowflake styles.

As a flyweight is stateless, ideally it allows multiple operations simultaneously. You might
need to be cautious when working with multi-thread stuff. Fortunately, JavaScript is
usually single-threaded and avoids this issue if all related code is synchronous. You will
still need to take care in detailed scenarios if your code is working asynchronously.

Structural Design Patterns

[115]

Assume we have some flyweights of class Snowflake:

When it snows, it would look like this:

In the image above, snowflakes in different styles are the result of rendering with different
properties.

It's common that we would have styles and image resources being loaded dynamically,
thus we could use a FlyweightFactory for creating and managing flyweight objects.

Participants
The simplest implementation of Flyweight Pattern has the following participants:

Flyweight: Snowflake

Defines the class of flyweight objects.

Flyweight factory: FlyweightFactory

Creates and manages flyweight objects.

Structural Design Patterns

[116]

Client.

Stores states of targets and uses flyweight objects to manipulate these targets.

With these participants, we assume that the manipulation could be accomplished through
flyweights with different states. It would also be helpful sometimes to have concrete
flyweight class allowing customized behaviors.

Pattern scope
Flyweight Pattern is a result of efforts to improving memory efficiency and performance.
The implementation cares about having the instances being stateless, and it is usually the
client that manages detailed states for different targets.

Implementation
What makes Flyweight Pattern useful in the snowflake example is that a snowflake with the
same style usually shares the same image. The image is what consumes time to load and
occupies notable memory.

We are starting with a fake Image class that pretends to load images:

class Image {
 constructor(url: string) { }
}

The Snowflake class in our example has only a single image property, and that is a
property that will be shared by many snowflakes to be drawn. As the instance is now
stateless, parameters from context are required for rendering:

class Snowflake {
 image: Image;

 constructor(
 public style: string
) {
 let url = style + '.png';
 this.image = new Image(url);
 }

 render(x: number, y: number, angle: number): void {
 // ...
 }

Structural Design Patterns

[117]

}

The flyweights are managed by a factory for easier accessing. We'll have a
SnowflakeFactory that caches created snowflake objects with certain styles:

const hasOwnProperty = Object.prototype.hasOwnProperty;

class SnowflakeFactory {
 cache: {
 [style: string]: Snowflake;
 } = {};

 get(style: string): Snowflake {
 let cache = this.cache;
 let snowflake: Snowflake;

 if (hasOwnProperty.call(cache, style)) {
 snowflake = cache[style];
 } else {
 snowflake = new Snowflake(style);
 cache[style] = snowflake;
 }

 return snowflake;
 }
}

With building blocks ready, we'll implement the client (Sky) that snows:

const SNOW_STYLES = ['A', 'B', 'C'];

class Sky {
 constructor(
 public width: number,
 public height: number
) { }

 snow(factory: SnowflakeFactory, count: number) { }
}

We are going to fill the sky with random snowflakes at random positions. Before that let's
create a helper function that generates a number between 0 and a max value given:

function getRandomInteger(max: number): number {
 return Math.floor(Math.random() * max);
}

Structural Design Patterns

[118]

And then complete method snow of Sky:

snow(factory: SnowflakeFactory, count: number) {
 let stylesCount = SNOW_STYLES.length;

 for (let i = 0; i < count; i++) {
 let style = SNOW_STYLES[getRandomInteger(stylesCount)];
 let snowflake = factory.get(style);

 let x = getRandomInteger(this.width);
 let y = getRandomInteger(this.height);

 let angle = getRandomInteger(60);

 snowflake.render(x, y, angle);
 }
}

Now we may have thousands of snowflakes in the sky but with only three instances of
Snowflake created. You can continue this example by storing the state of snowflakes and
animating the snowing.

Consequences
Flyweight Pattern reduces the total number of objects involved in a system. As a direct
result, it may save quite a lot memory. This saving becomes more significant when the
flyweights get used by the client that processes a large number of targets.

Flyweight Pattern also brings extra logic into the system. When to use or not to use this
pattern is again a balancing game between development efficiency and runtime efficiency
from this point of view. Though most of the time, if there's not a good reason, we go with
development efficiency.

Proxy Pattern
Proxy Pattern applies when the program needs to know about or to intervene the behavior
of accessing objects. There are several detailed scenarios in Proxy Pattern, and we can
distinguish those scenarios by their different purposes:

Remote proxy: A proxy with interface to manipulate remote objects, such as data
items on a remote server

Structural Design Patterns

[119]

Virtual proxy: A proxy that manages expensive objects which need to be loaded
on demand
Protection proxy: A proxy that controls access to target objects, typically it
verifies permissions and validates values
Smart proxy: A proxy that does additional operations when accessing target
objects

In the section of Adapter Pattern, we used factory method open that creates an object
asynchronously. As a trade-off, we had to let the client wait before the object gets created.

With Proxy Pattern, we could now open database on demand and create storage instances
synchronously.

A proxy is usually dedicated to object or objects with known methods and
properties. But with the new Proxy API provided in ES6, we can get more
interesting things done by getting to know what methods or properties are
being accessed. Please refer to the following link for more information: h t t
p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i p t / R e f e r e n c e

/ G l o b a l _ O b j e c t s / P r o x y.

Participants
The participants of Proxy Pattern include:

Proxy: IndexedDBStorage

Defines interface and implements operations to manage access to the subject.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

Structural Design Patterns

[120]

Subject: IndexedDB

The subject to be accessed by proxy.

Client: Accesses subject via proxy.

Pattern scope
Despite having a similar structure to Adapter Pattern, the key of Proxy Pattern is to
intervene the access to target objects rather than to adapt an incompatible interface.
Sometimes it might change the result of a specific method or the value of a certain property,
but that is probably for falling back or exception handling purposes.

Implementation
There are two differences we'll have in this implementation compared to the example for
pure Adapter Pattern. First, we'll create the IndexedDBStorage instance with
a constructor, and have the database opened on demand. Second, we are going to add a
useless permission checking for methods get and set.

Now when we call the method get or set, the database could either have been opened or
not. Promise is a great choice for representing a value that might either be pending or
settled. Consider this example:

let ready = new Promise<string>(resolve => {
 setTimeout(() => {
 resolve('biu~');
 }, Math.random() * 1000);
});

setTimeout(() => {
 ready.then(text => {
 console.log(text);
 });
}, 999);

It's hard to tell whether Promise ready is fulfilled when the second timeout fires. But the
overall behavior is easy to predict: it will log the 'biu~' text in around 1 second. By
replacing the Promise variable ready with a method or getter, it would be able to start the
asynchronous operation only when needed.

Structural Design Patterns

[121]

So let's start the refactoring of class IndexedDBStorage with the getter that creates the
Promise of the database to be opened:

private dbPromise: Promise<IDBDatabase>;

constructor(
 public name: string,
 public storeName = 'default'
) { }

private get dbReady(): Promise<IDBDatabase> {
 if (!this.dbPromise) {
 this.dbPromise =
 new Promise<IDBDatabase>((resolve, reject) => {
 let request = indexedDB.open(name);

 request.onsuccess = event => {
 resolve(request.result);
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
 }

 return this.dbPromise;
}

Now the first time we access property dbReady, it will open the database and create a
Promise that will be fulfilled with the database being opened. To make this work with
methods get and set, we just need to wrap what we've implemented into a then method
following the dbReady Promise.

First for method get:

get<T>(key: string): Promise<T> {
 return this
 .dbReady
 .then(db => new Promise<T>((resolve, reject) => {
 let transaction = db.transaction(this.storeName);
 let store = transaction.objectStore(this.storeName);

 let request = store.get(key);

 request.onsuccess = event => {
 resolve(request.result);

Structural Design Patterns

[122]

 };

 request.onerror = event => {
 reject(request.error);
 };
 }));
}

And followed by updated method set:

set<T>(key: string, value: T): Promise<void> {
 return this
 .dbReady
 .then(db => new Promise<void>((resolve, reject) => {
 let transaction = db
 .transaction(this.storeName, 'readwrite');
 let store = transaction.objectStore(this.storeName);

 let request = store.put(value, key);

 request.onsuccess = event => {
 resolve();
 };

 request.onerror = event => {
 reject(request.error);
 };
 }));
}

Now we finally have the IndexedDBStorage property that can do a real drop-in
replacement for the client that supports the interface. We are also going to add simple
permission checking with a plain object that describes the permission of read and write:

interface Permission {
 write: boolean;
 read: boolean;
}

Then we will add permission checking for method get and set separately:

get<T>(key: string): Promise<T> {
 if (!this.permission.read) {
 return Promise.reject<T>(new Error('Permission denied'));
 }

 // ...
}

Structural Design Patterns

[123]

set<T>(key: string, value: T): Promise<void> {
 if (!this.permission.write) {
 return Promise.reject(new Error('Permission denied'));
 }

 // ...
}

You may recall Decorator Pattern when you are thinking about the permission checking
part, and decorators could be used to simplify the lines written. Try to use decorator syntax
to implement this permission checking yourself.

Consequences
The implementation of Proxy Pattern can usually be treated as the encapsulation of the
operations to specific objects or targets. It is easy to have the encapsulation augmented
without extra burden on the client.

For example, a working online database proxy could do much more than just acting like a
plain surrogate. It may cache data and changes locally, or synchronize on schedule without
the client being aware.

Summary
In this chapter, we learned about structural design patterns including Composite,
Decorator, Adapter, Bridge, Façade, Flyweight, and Proxy. Again we found some of these
patterns are highly inter related and even similar to each other to some degree.

For example, we mixed Composite Pattern with Decorator Pattern, Adapter Pattern with
Proxy Pattern, compared Adapter Pattern and Bridge Pattern. During the journey of
exploring, we sometimes found it was just a natural result to have our code end in a pattern
that's similar to what we've listed if we took writing better code into consideration.

Taking Adapter Pattern and Bridge Pattern as an example, when we are trying to make two
classes cooperate, it comes out with Adapter Pattern and when we are planning on
connecting with different classes in advance, it goes with Bridge Pattern. There are no actual
lines between each pattern and the applications of those patterns, though the techniques
behind patterns could usually be useful.

In the next chapter, we are going to talk about behavioral patterns that help to form
algorithms and assign the responsibilities.

5
Behavioral Design Patterns

As the name suggests, behavioral design patterns are patterns about how objects or classes
interact with each other. The implementation of behavioral design patterns usually requires
certain data structures to support the interaction in a system. However, behavioral patterns
and structural patterns focus on different aspects when applied. As a result, you might find
patterns in the category of behavioral design patterns usually have simpler or more
straightforward structures compared to structural design patterns.

In this chapter, we are going to talk about some of the following common behavioral
patterns:

Chain of Responsibility: Organizes behaviors with different scopes
Command: Exposes commands from the internal with encapsulated context
Memento: Provides an approach for managing states outside of their owners
without exposing detailed implementations
Iterator: Provides a universal interface for traversing
Mediator: It groups coupling and logically related objects and makes
interconnections cleaner in a system that manages many objects

Chain of Responsibility Pattern
There are many scenarios under which we might want to apply certain actions that can fall
back from a detailed scope to a more general one.

A nice example would be the help information of a GUI application: when a user requests
help information for a certain part of the user interface, it is expected to show information
as specific as possible. This can be done with different implementations, and the most
intuitive one for a web developer could be events bubbling.

Behavioral Design Patterns

[125]

Consider a DOM structure like this:

<div class="outer">
 <div class="inner">

 </div>
</div>

If a user clicks on the span.origin element, a click event would start bubbling from the
span element to the document root (if useCapture is false):

$('.origin').click(event => {
 console.log('Click on `span.origin`.');
});

$('.outer').click(event => {
 console.log('Click on `div.outer`.');
});

By default, it will trigger both event listeners added in the preceding code. To stop the
propagation as soon as an event gets handled, we can call its stopPropagation method:

$('.origin').click(event => {
 console.log('Click on `span.origin`.');
 event.stopPropagation();
});

$('.outer').click(event => {
 Console.log('Click on `div.outer`.');
});

Though a click event is not exactly the same as the help information request, with the
support of custom events, it's quite easy to handle help information with necessary detailed
or general information in the same chain.

Another important implementation of the Chain of Responsibility Pattern is related to error
handling. A primitive example for this could be using try...catch. Consider code like
this: we have three functions: foo, bar, and biu, foo is called by bar while bar is called by
biu:

function foo() {
 // throw some errors.
}

function bar() {
 foo();
}

Behavioral Design Patterns

[126]

function biu() {
 bar();
}

biu();

Inside both functions bar and biu, we can do some error catching. Assuming function foo
throws two kinds of errors:

function foo() {
 let value = Math.random();

 if (value < 0.5) {
 throw new Error('Awesome error');
 } else if (value < 0.8) {
 throw new TypeError('Awesome type error');
 }
}

In function bar we would like to handle the TypeError and leave other errors throwing
on:

function bar() {
 try {
 foo();
 } catch (error) {
 if (error instanceof TypeError) {
 console.log('Some type error occurs', error);
 } else {
 throw error;
 }
 }
}

And in function biu, we would like to add more general handling that catches all the errors
so that the program will not crash:

function biu() {
 try {
 bar();
 } catch (error) {
 console.log('Some error occurs', error);
 }
}

Behavioral Design Patterns

[127]

So by using try...catch statements, you may have been using the Chain of Responsibility
Pattern constantly without paying any attention to it. Just like you may have been using
other well-known design patterns all the time.

If we abstract the structure of Chain of Responsibility Pattern into objects, we could have
something as illustrated in the figure:

Participants
The participants of the Chain of Responsibility Pattern include:

Handler: Defines the interface of the handler with successor and method to
handle requests. This is done implicitly with classes like EventEmitter and
try...catch syntax.
Concrete handler: EventListener, catch block and HandlerA/HandlerB in
the class version. Defines handlers in the form of callbacks, code blocks and
classes that handle requests.
Client: Initiates the requests that go through the chain.

Behavioral Design Patterns

[128]

Pattern scope
The Chain of Responsibility Pattern itself could be applied to many different scopes in a
program. It requires a multi-level chain to work, but this chain could be in different forms.
We've been playing with events as well as try...catch statements that have structural
levels, this pattern could also be applied to scenarios that have logical levels.

Consider objects marked with different scopes using string:

let objectA = {
 scope: 'user.installation.package'
};

let objectB = {
 scope: 'user.installation'
};

Now we have two objects with related scopes specified by string, and by adding filters to
these scope strings, we can apply operations from specific ones to general ones.

Implementation
In this part, we are going to implement the class version we've mentioned at the end of the
introduction to the Chain of Responsibility Pattern. Consider requests that could either ask
for help information or feedback prompts:

type RequestType = 'help' | 'feedback';

interface Request {
 type: RequestType;
}

We are using string literal type here with union type. It is a pretty useful
feature provided in TypeScript that plays well with existing JavaScript
coding styles.
See the following link for more information: h t t p : / / w w w . t y p e s c r i p t l a n g

. o r g / d o c s / h a n d b o o k / a d v a n c e d - t y p e s . h t m l.

One of the key processes for this pattern is going through the handlers' chain and finding
out the most specific handler that's available for the request. There are several ways to
achieve this: by recursively invoking the handle method of a successor, or having a
separate logic walking through the handler successor chain until the request is confirmed as
handled.

http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html

Behavioral Design Patterns

[129]

The logic walking through the chain in the second way requires the acknowledgment of
whether a request has been properly handled. This can be done either by a state indicator
on the request object or by the return value of the handle method.

We'll go with the recursive implementation in this part. Firstly, we want the default
handling behavior of a handler to be forwarding requests to its successor if any:

class Handler {
 private successor: Handler;

 handle(request: Request): void {
 if (this.successor) {
 this.successor.handle(request);
 }
 }
}

And now for HelpHandler, it handles help requests but forwards others:

class HelpHandler extends Handler {
 handle(request: Request): void {
 if (request.type === 'help') {
 // Show help information.
 } else {
 super.handle(request);
 }
 }
}

The code for FeedbackHandler is similar:

class FeedbackHandler extends Handler {
 handle(request: Request): void {
 if (request.type === 'feedback') {
 // Prompt for feedback.
 } else {
 super.handle(request);
 }
 }
}

Thus, a chain of handlers could be made up in some way. And if a request got in this chain,
it would be passed on until a handler recognizes and handles it. However, it is not
necessary to have all requests handled after processing them. The handlers can always pass a
request on whether this request gets processed by this handler or not.

Behavioral Design Patterns

[130]

Consequences
The Chain of Responsibility Pattern decouples the connection between objects that issue the
requests and logic that handles those requests. The sender assumes that its requests could,
but not necessarily, be properly handled without knowing the details. For some
implementations, it is also very easy to add new responsibilities to a specific handler on the
chain. This provides notable flexibility for handling requests.

Besides the examples we've been talking about, there is another important mutation of
try...catch that can be treated in the Chain of Responsibility Pattern – Promise. Within a
smaller scope, the chain could be represented as:

promise
 .catch(TypeError, reason => {
 // handles TypeError.
 })
 .catch(ReferenceError, reason => {
 // handles ReferenceError.
 })
 .catch(reason => {
 // handles other errors.
 });

The standard catch method on an ES Promise object does not provide the
overload that accepts an error type as a parameter, but many
implementations do.

In a larger scope, this chain would usually appear when the code is playing with third-
party libraries. A common usage would be converting errors produced by other libraries to
errors known to the current project. We'll talk more about error handling of asynchronous
code later in this book.

Command Pattern
Command Pattern involves encapsulating operations as executable commands and could
either be in the form of objects or functions in JavaScript. It is common that we may want to
make operations rely on certain context and states that are not accessible for the invokers.
By storing those pieces of information with a command and passing it out, this situation
could be properly handled.

Behavioral Design Patterns

[131]

Consider an extremely simple example: we want to provide a function called wait, which
returns a cancel handler:

function wait() {
 let $layer = $('.wait-layer');
 $layer.show();
 return () => {
 $layer.hide();
 };
}

let cancel = wait();

setTimeout(() => cancel(), 1000);

The cancel handler in the preceding code is just a command we were talking about. It
stores the context ($layer) using closure and is passed out as the return value of function
wait.

Closure in JavaScript provides a really simple way to store command context and states,
however, the direct disadvantage would be compromised flexibility between context/states
and command functions because closure is lexically determined and cannot be changed at
runtime. This would be okay if the command is only expected to be invoked with fixed
context and states, but for more complex situations, we might need to construct them as
objects with a proper data structure.

The following diagram shows the overall relations between participants of Command
Pattern:

Behavioral Design Patterns

[132]

By properly splitting apart context and states with the command object, Command Pattern
could also play well with Flyweight Pattern if you wanted to reuse command objects
multiple times.

Other common extensions based on Command Pattern include undo support and macros
with multiple commands. We are going to play with those later in the implementation part.

Participants
The participants of Command Pattern include:

Command: Defines the general interface of commands passing around, it could
be a function signature if the commands are in the form of functions.
Concrete command: Defines the specific behaviors and related data structure. It
could also be a function that matches the signature declared as Command. The
cancel handler in the very first example is a concrete command.
Context: The context or receiver that the command is associated with. In the first
example, it is the $layer.
Client: Creates concrete commands and their contexts.
Invoker: Executes concrete commands.

Pattern scope
Command Pattern suggests two separate parts in a single application or a larger system:
client and invoker. In the simplified example wait and cancel, it could be hard to
distinguish the difference between those parts. But the line is clear: client knows or controls
the context of commands to be executed with, while invoker does not have access or does
not need to care about that information.

The key to the Command Pattern is the separation and bridging between those two parts
through commands that store context and states.

Behavioral Design Patterns

[133]

Implementation
It's common for an editor to expose commands for third-party extensions to modify the text
content. Consider a TextContext that contains information about the text file being
edited and an abstract TextCommand class associated with that context:

class TextContext {
 content = 'text content';
}

abstract class TextCommand {
 constructor(
 public context: TextContext
) { }

 abstract execute(...args: any[]): void;
}

Certainly, TextContext could contain much more information like language, encoding,
and so on. You can add them in your own implementation for more functionality. Now we
are going to create two commands: ReplaceCommand and InsertCommand.

class ReplaceCommand extends TextCommand {
 execute(index: number, length: number, text: string): void {
 let content = this.context.content;

 this.context.content =
 content.substr(0, index) +
 text +
 content.substr(index + length);
 }
}

class InsertCommand extends TextCommand {
 execute(index: number, text: string): void {
 let content = this.context.content;

 this.context.content =
 content.substr(0, index) +
 text +
 content.substr(index);
 }
}

Those two commands share similar logic and actually InsertCommand can be treated as a
subset of ReplaceCommand. Or if we have a new delete command, then replace command
can be treated as the combination of delete and insert commands.

Behavioral Design Patterns

[134]

Now let's assemble those commands with the client and invoker:

class Client {
 private context = new TextContext();

 replaceCommand = new ReplaceCommand(this.context);
 insertCommand = new InsertCommand(this.context);
}

let client = new Client();

$('.replace-button').click(() => {
 client.replaceCommand.execute(0, 4, 'the');
});

$('.insert-button').click(() => {
 client.insertCommand.execute(0, 'awesome ');
});

If we go further, we can actually have a command that executes other commands. Namely,
we can have macro commands. Though the preceding example alone does not make it
necessary to create a macro command, there would be scenarios where macro commands
help. As those commands are already associated with their contexts, a macro command
usually does not need to have an explicit context:

interface TextCommandInfo {
 command: TextCommand,
 args: any[];
}

class MacroTextCommand {
 constructor(
 public infos: TextCommandInfo[]
) { }

 execute(): void {
 for (let info of this.infos) {
 info.command.execute(...info.args);
 }
 }
}

Consequences
Command Pattern decouples the client (who knows or controls context) and the invoker
(who has no access to or does not care about detailed context).

Behavioral Design Patterns

[135]

It plays well with Composite Pattern. Consider the example of macro commands we
mentioned above: a macro command can have other macro commands as its components,
thus we make it a composite command.

Another important case of Command Pattern is adding support for undo operations. A
direct approach is to add the undo method to every command. When an undo operation is
requested, invoke the undo method of commands in reverse order, and we can pray that
every command would be undone correctly. However, this approach relies heavily on a
flawless implementation of the undo method as every mistake will accumulate. To
implement more stable undo support, redundant information or snapshots could be stored.

Memento Pattern
We've talked about an undo support implementation in the previous section on the
Command Pattern, and found it was not easy to implement the mechanism purely based on
reversing all the operations. However, if we take snapshots of objects as their history, we
may manage to avoid accumulating mistakes and make the system more stable. But then
we have a problem: we need to store the states of objects while the states are encapsulated
with objects themselves.

Memento Pattern helps in this situation. While a memento carries the state of an object at a
certain time point, it also controls the process of setting the state back to an object. This
makes the internal state implementation hidden from the undo mechanism in the following
example:

Behavioral Design Patterns

[136]

We have the instances of the memento controlling the state restoration in the preceding
structure. It can also be controlled by the caretaker, namely the undo mechanism, for simple
state restoring cases.

Participants
The participants of Memento Pattern include:

Memento: Stores the state of an object and defines method restore or other
APIs for restoring the states to specific objects
Originator: Deals with objects that need to have their internal states stored
Caretaker: Manages mementos without intervening with what's inside

Pattern scope
Memento Pattern mainly does two things: it prevents the caretaker from knowing the
internal state implementation and decouples the state retrieving and restoring process from
states managed by the Caretaker or Originator.

When the state retrieving and restoring processes are simple, having separated mementos
does not help much if you are already keeping the decoupling idea in mind.

Implementation
Start with an empty State interface and Memento class. As we do not want Caretaker to
know the details about state inside an Originator or Memento, we would like to make
state property of Memento private. Having restoration logic inside Memento does also help
with this, and thus we need method restore. So that we don't need to expose a public
interface for reading state inside a memento.

And as an object assignment in JavaScript assigns only its reference, we would like to do a
quick copy for the states (assuming state objects are single-level):

interface State { }

class Memento {
 private state: State;

 constructor(state: State) {
 this.state = Object.assign({} as State, state);

Behavioral Design Patterns

[137]

 }

 restore(state: State): void {
 Object.assign(state, this.state);
 }
}

For Originator we use a getter and a setter for creating and restoring specific mementos:

class Originator {
 state: State;

 get memento(): Memento {
 return new Memento(this.state);
 }

 set memento(memento: Memento) {
 memento.restore(this.state);
 }
}

Now the Caretaker would manage the history accumulated with mementos:

class Caretaker {
 originator: Originator;
 history: Memento[] = [];

 save(): void {
 this.history.push(this.originator.memento);
 }

 restore(): void {
 this.originator.memento = this.history.shift();
 }
}

In some implementations of Memento Pattern, a getState method is provided for
instances of Originator to read state from a memento. But to prevent classes other than
Originator from accessing the state property, it may rely on language features like a
friend modifier to restrict the access (which is not yet available in TypeScript).

Behavioral Design Patterns

[138]

Consequences
Memento Pattern makes it easier for a caretaker to manage the states of originators and it
becomes possible to extend state retrieving and restoring. However, a perfect
implementation that seals everything might rely on language features as we've mentioned
before. Using mementos could also bring a performance cost as they usually contain
redundant information in trade of stability.

Iterator Pattern
Iterator Pattern provides a universal interface for accessing internal elements of an
aggregate without exposing the underlying data structure. A typical iterator contains the
following methods or getters:

first(): moves the cursor to the first element in the aggregates
next(): moves the cursor to the next element
end: a getter that returns a Boolean indicates whether the cursor is at the end
item: a getter that returns the element at the position of the current cursor
index: a getter that returns the index of the element at the current cursor

Iterators for aggregates with different interfaces or underlying structures usually end with
different implementations as shown in the following figure:

Behavioral Design Patterns

[139]

Though the client does not have to worry about the structure of an aggregate, an iterator
would certainly need to. Assuming we have everything we need to build an iterator, there
could be a variety of ways for creating one. The factory method is widely used when
creating iterators, or a factory getter if no parameter is required.

Starting with ES6, syntax sugar for...of is added and works for all objects with property
Symbol.iterator. This makes it even easier and more comfortable for developers to work
with customized lists and other classes that can be iterated.

Participants
The participants of Iterator Pattern include:

Iterator: AbstractListIterator

Defines the universal iterator interface that is going to transverse different
aggregates.

Concrete iterator: ListIterator, SkipListIterator and
ReversedListIterator

Implements specific iterator that transverses and keeps track of a specific
aggregate.

Aggregate: AbstractList

Defines a basic interface of aggregates that iterators are going to work with.

Concreate aggregate: List and SkipList

Defines the data structure and factory method/getter for creating associated
iterators.

Pattern scope
Iterator Pattern provides a unified interface for traversing aggregates. In a system that
doesn't rely on iterators, the main functionality provided by iterators could be easily taken
over by simple helpers. However, the reusability of those helpers could be reduced as the
system grows.

Behavioral Design Patterns

[140]

Implementation
In this part, we are going to implement a straightforward array iterator, as well as an ES6
iterator.

Simple array iterator
Let's start by creating an iterator for a JavaScript array, which should be extremely easy.
Firstly, the universal interface:

interface Iterator<T> {
 first(): void;
 next(): void;
 end: boolean;
 item: T;
 index: number;
}

Please notice that the TypeScript declaration for ES6 has already declared
an interface called Iterator. Consider putting the code in this part into a
namespace or module to avoid conflicts.

And the implementation of a simple array iterator could be:

class ArrayIterator<T> implements Iterator<T> {
 index = 0;

 constructor(
 public array: T[]
) { }

 first(): void {
 this.index = 0;
 }

 next(): void {
 this.index++;
 }

 get end(): boolean {
 return this.index >= this.array.length;
 }

 get item(): T {
 return this.array[this.index];

Behavioral Design Patterns

[141]

 }
}

Now we need to extend the prototype of native Array to add an iterator getter:

Object.defineProperty(Array.prototype, 'iterator', {
 get() {
 return new ArrayIterator(this);
 }
});

To make iterator a valid property of the Array instance, we also need to extend the
interface of Array:

interface Array<T> {
 iterator: IteratorPattern.Iterator<T>;
}

This should be written outside the namespace under the global scope. Or
if you are in a module or ambient module, you might want to try declare
global { ... } for adding new properties to existing global interfaces.

ES6 iterator
ES6 provides syntax sugar for...of and other helpers for iterable objects, namely the
objects that have implemented the Iterable interface of the following:

interface IteratorResult<T> {
 done: boolean;
 value: T;
}

interface Iterator<T> {
 next(value?: any): IteratorResult<T>;
 return?(value?: any): IteratorResult<T>;
 throw?(e?: any): IteratorResult<T>;
}

interface Iterable<T> {
 [Symbol.iterator](): Iterator<T>;
}

Behavioral Design Patterns

[142]

Assume we have a class with the following structure:

class SomeData<T> {
 array: T[];
}

And we would like to make it iterable. More specifically, we would like to make it iterates
reversely. As the Iterable interface suggests, we just need to add a method with a special
name Symbol.iterator for creating an Iterator. Let's call the iterator SomeIterator:

class SomeIterator<T> implements Iterator<T> {
 index: number;

 constructor(
 public array: T[]
) {
 this.index = array.length - 1;
 }

 next(): IteratorResult<T> {
 if (this.index <= this.array.length) {
 return {
 value: undefined,
 done: true
 };
 } else {
 return {
 value: this.array[this.index--],
 done: false
 }
 }
 }
}

And then define the iterator method:

class SomeData<T> {
 array: T[];

 [Symbol.iterator]() {
 return new SomeIterator<T>(this.array);
 }
}

Behavioral Design Patterns

[143]

Now we would have SomeData that works with for...of.

Iterators also play well with generators; see the following link for more
examples: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i

p t / R e f e r e n c e / I t e r a t i o n _ p r o t o c o l s.

Consequences
Iterator Pattern decouples iteration usage from the data structure that is being iterated. The
direct benefit of this is enabling an interchangeable data class that may have completely
different internal structures, like an array and binary tree. Also, one data structure can be
iterated via different iterators with different traversal mechanisms and results in different
orders and efficiencies.

A unified iterator interface in one system could also help the developer from being
confused when facing different aggregates. As we mentioned previously, some language
like your beloved JavaScript provides a language level abstraction for iterators and makes
life even easier.

Mediator Pattern
The connections between UI components and related objects could be extremely complex.
Object-oriented programming distributes functionalities among objects. This makes coding
easier with cleaner and more intuitive logic; however, it does not ensure the reusability and
sometimes makes it difficult to understand if you look at the code again after some days
(you may still understand every single operation but would be confused about the
interconnections if the network becomes really intricate).

Consider a page for editing user profile. There are standalone inputs like nickname and
tagline, as well as inputs that are related to each other. Taking location selection for
example, there could easily be a tree-level location and the options available in lower levels
are determined by the selection of higher levels. However, if those objects are managed
directly by a single huge controller, it will result in a page that has limited reusability. The
code formed under this situation would also tend to have a hierarchy that's less clean for
people to understand.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols

Behavioral Design Patterns

[144]

Mediator Pattern tries to solve this problem by separating coupling elements and objects as
groups, and adding a director between a group of elements and other objects as shown in
the following figure:

Those objects form a mediator with their colleagues that can interact with other objects as a
single object. With proper encapsulation, the mediator will have better reusability as it has
just the right size and properly divided functionality. In the world of web front end
development, there are concepts or implementations that fit Mediator Pattern well, like Web
Component and React.

Participants
The participants of Mediator Pattern include:

Mediator:

Usually, the abstraction or skeleton predefined by a framework. Defines the
interface that colleagues in a mediator communicate through.

Concrete mediator: LocationPicker

Manages the colleagues and makes them cooperate, providing a higher level
interface for objects outside.

Colleague classes: CountryInput, ProvinceInput, CityInput

Defines references to their mediator and notifies its changes to the mediator
and accepts modifications issued by the mediator.

Behavioral Design Patterns

[145]

Pattern scope
Mediator Pattern could connect many parts of a project, but does not have direct or
enormous impact on the outline. Most of the credit is given because of increased usability
and cleaner interconnections introduced by mediators. However, along with a nice overall
architecture, Mediator Pattern can help a lot with refined code quality, and make the project
easier to maintain.

Implementation
Using libraries like React would make it very easy to implement Mediator Pattern, but for
now, we are going with a relatively primitive way and handle changes by hand. Let's think
about the result we want for a LocationPicker we've discussed, and hopefully, it includes
country, province and city fields:

interface LocationResult {
 country: string;
 province: string;
 city: string;
}

And now we can sketch the overall structure of class LocationPicker:

class LocationPicker {
 $country = $(document.createElement('select'));
 $province = $(document.createElement('select'));
 $city = $(document.createElement('select'));

 $element = $(document.createElement('div'))
 .append(this.$country)
 .append(this.$province)
 .append(this.$city);

 get value(): LocationResult {
 return {
 country: this.$country.val(),
 province: this.$province.val(),
 city: this.$city.val()
 };
 }
}

Behavioral Design Patterns

[146]

Before we can tell how the colleagues are going to cooperate, we would like to add a helper
method setOptions for updating options in a select element:

private static setOptions(
 $select: JQuery,
 values: string[]
): void {
 $select.empty();

 let $options = values.map(value => {
 return $(document.createElement('option'))
 .text(value)
 .val(value);
 });

 $select.append($options);
}

I personally tend to have methods that do not depend on a specific instance static methods
and this applies to methods getCountries, getProvincesByCountry, and
getCitiesByCountryAndProvince that simply return a list by the information given as
function arguments (though we are not going to actually implement that part):

private static getCountries(): string[] {
 return ['-'].concat([/* countries */]);
}

private static getProvincesByCountry(country: string): string[] {
 return ['-'].concat([/* provinces */]);
}

private static getCitiesByCountryAndProvince(
 country: string,
 province: string
): string[] {
 return ['-'].concat([/* cities */]);
}

Now we may add methods for updating options in the select elements:

updateProvinceOptions(): void {
 let country: string = this.$country.val();

 let provinces = LocationPicker.getProvincesByCountry(country);
 LocationPicker.setOptions(this.$province, provinces);

 this.$city.val('-');

Behavioral Design Patterns

[147]

}

updateCityOptions(): void {
 let country: string = this.$country.val();
 let province: string = this.$province.val();

 let cities = LocationPicker
 .getCitiesByCountryAndProvince(country, province);
 LocationPicker.setOptions(this.$city, cities);
}

Finally, weave those colleagues together and add listeners to the change events:

constructor() {
 LocationPicker
 .setOptions(this.$country, LocationPicker.getCountries());
 LocationPicker.setOptions(this.$province, ['-']);
 LocationPicker.setOptions(this.$city, ['-']);

 this.$country.change(() => {
 this.updateProvinceOptions();
 });

 this.$province.change(() => {
 this.updateCityOptions();
 });
}

Consequences
Mediator Pattern, like many other design patterns, downgrades a level-100 problem into
two level-10 problems and solves them separately. A well-designed mediator usually has a
proper size and usually tends to be reused in the future. For example, we might not want to
put nickname input together with the country, province, and city inputs as this combination
doesn't tend to occur in other situations (which means they are not strongly related).

As the project evolves, a mediator may grow to a size that's not efficient anymore. So a
properly designed mediator should also take the dimension of time into consideration.

Behavioral Design Patterns

[148]

Summary
In this chapter, we talked about some common behavioral patterns for different scopes and
different scenarios. Chain of Responsibility Pattern and Command Pattern can apply to a
relatively wide range of scopes, while other patterns mentioned in this chapter usually care
more about the scope with objects and classes directly related.

Behavioral patterns we've talked about in this chapter are less like each other compared to
creational patterns and structural patterns we previously walked through. Some of the
behavioral patterns could compete with others, but many of them could cooperate. For
example, we talked about Command Pattern with Memento Pattern to implement undo
support. Many others may cooperate in parallel and do their own part.

In the next chapter, we'll continue talking about other behavioral design patterns that are
useful and widely used.

6
Behavioral Design Patterns:

Continuous
In the previous chapter, we've already talked about some of the behavioral design patterns.
We'll be continuing with more patterns in this category in this chapter, including: Strategy
Pattern, State Pattern, Template Method Pattern, Observer Pattern, and Visitor Pattern.

Many of these patterns share the same idea: unify the shape and vary the details. Here is a
quick overview:

Strategy Pattern and Template Pattern: Defines the same outline of algorithms
State Pattern: Provides different behavior for objects in different states with the
same interface
Observer Pattern: Provides a unified process of handling subject changes and
notifying observers
Visitor Pattern: Does similar jobs as Strategy Pattern sometimes, but avoids an
over complex interface that might be required for Strategy Pattern to handle
objects in many different types

Patterns that will be discussed in this chapter could be applied in different scopes just as
many patterns in other categories.

Behavioral Design Patterns: Continuous

[150]

Strategy Pattern
It's common that a program has similar outlines for processing different targets with
different detailed algorithms. Strategy Pattern encapsulates those algorithms and makes
them interchangeable within the shared outline.

Consider conflicting merging processes of data synchronization, which we talked about in
Chapter 2, The Challenge of Increasing Complexity. Before refactoring, the code was like this:

if (type === 'value') {
 // ...
} else if (type === 'increment') {
 // ...
} else if (type === 'set') {
 // ...
}

But later we found out that we could actually extract the same outlines from different
phases of the synchronization process, and encapsulate them as different strategies. After
refactoring, the outline of the code became as follows:

let strategy = strategies[type];
strategy.operation();

We get a lot of ways to compose and organize those strategy objects or classes sometimes in
JavaScript. A possible structure for Strategy Pattern could be:

In this structure, the client is responsible for fetching specific strategies from the table and
applying operations of the current phase.

Behavioral Design Patterns: Continuous

[151]

Another structure is using contextual objects and letting them control their own strategies:

Thus the client needs only to link a specific context with the corresponding strategy.

Participants
We've mentioned two possible structures for Strategy Pattern, so let's discuss the
participants separately. For the first structure, the participants include the following:

Strategy

Defines the interface of strategy objects or classes.

Concrete strategy: ConcreteStrategyA and ConcreteStrategyB

Implements concrete strategy operations defined by the Strategy interface.

Strategy manager: Strategies

Defines a data structure to manage strategy objects. In the example, it's just a
simple hash table that uses data type names as keys and strategy objects as
values. It could be more complex on demand: for example, with matching
patterns or conditions.

Target

The target to apply algorithms defined in strategy objects.

Client

Makes targets and strategies cooperate.

Behavioral Design Patterns: Continuous

[152]

The participants of the second structure include the following:

Strategy and concrete strategy

The same as in the preceding section.

Context

Defines a reference to the strategy object applied. Provides related methods
or property getters for clients to operate.

Client

Manages context objects.

Pattern scope
Strategy Pattern is usually applied to scopes with small or medium sizes. It provides a way
to encapsulate algorithms and makes those algorithms easier to manage under the same
outline. Strategy Pattern can also be the core of an entire solution sometimes, and a good
example is the synchronization implementation we've been playing with. In this case,
Strategy Pattern builds the bridge of plugins and makes the system extendable. But most of
the time, the fundamental work done by Strategy Pattern is decoupling concrete strategies,
contexts, or targets.

Implementation
The implementation starts with defining the interfaces of objects we'll be playing with. We
have two target types in string literal type 'a' and 'b'. Targets of type 'a' have a result
property with type string, while targets of type 'b' have a value property with type
number.

The interfaces we'll have look, are like:

type TargetType = 'a' | 'b';

interface Target {
 type: TargetType;
}

interface TargetA extends Target {
 type: 'a';

Behavioral Design Patterns: Continuous

[153]

 result: string;
}

interface TargetB extends Target {
 type: 'b';
 value: number;
}

interface Strategy<TTarget extends Target> {
 operationX(target: TTarget): void;
 operationY(target: TTarget): void;
}

Now we'll define the concrete strategy objects without a constructor:

let strategyA: Strategy<TargetA> = {
 operationX(target) {
 target.result = target.result + target.result;
 },
 operationY(target) {
 target.result = target
 .result
 .substr(Math.floor(target.result.length / 2));
 }
};

let strategyB: Strategy<TargetB> = {
 operationX(target) {
 target.value = target.value * 2;
 },
 operationY(target) {
 target.value = Math.floor(target.value / 2);
 }
};

To make it easier for a client to fetch those strategies, we'll put them into a hash table:

let strategies: {
 [type: string]: Strategy<Target>
} = {
 a: strategyA,
 b: strategyB
};

Behavioral Design Patterns: Continuous

[154]

And now we can make them work with targets in different types:

let targets: Target[] = [
 { type: 'a' },
 { type: 'a' },
 { type: 'b' }
];

for (let target of targets) {
 let strategy = strategies[target.type];

 strategy.operationX(target);
 strategy.operationY(target);
}

Consequences
Strategy Pattern makes the foreseeable addition of algorithms for contexts or targets under
new categories easier. It also makes the outline of a process even cleaner by hiding trivial
branches of behaviors selection.

However, the abstraction of algorithms defined by the Strategy interface may keep
growing while we are trying to add more strategies and satisfy their requirements of
parameters. This could be a problem for a Strategy Pattern with clients that are managing
targets and strategies. But for the other structures which the references of strategy objects
are stored by contexts themselves, we can manage to trade-off the interchangeability. This
would result in Visitor Pattern, which we are going to talk about later in this chapter.

And as we've mentioned before, Strategy Pattern can also provide notable extensibility if an
extendable strategy manager is available or the client of contexts is designed to.

State Pattern
It's possible for some objects to behave completely differently when they are in different
states. Let's think about an easy example first. Consider rendering and interacting with a
custom button in two states: enabled and disabled. When the button is enabled, it lights up
and changes its style to active on a mouse hover, and of course, it handles clicks; when
disabled, it dims and no longer cares about mouse events.

Behavioral Design Patterns: Continuous

[155]

We may think of an abstraction with two operations: render (with a parameter that
indicates whether the mouse is hovering) and click; along with two states: enabled and
disabled. We can even divide deeper and have state active, but that won't be necessary in our
case.

And now we can have StateEnabled with both render and click methods
implemented, while having StateDisabled with only render method
implemented because it does not care about the hover parameter. In this example, we are
expecting every method of the states being callable. So we can have the abstract class State
with empty render and click methods.

Participants
The participants of State Pattern include the following:

State

Defines the interface of state objects that are being switched to internally.

Concrete state: StateEnabled and StateDisabled

Implements the State interface with behavior corresponding to a specific
state of the context. May have an optional reference back to its context.

Context

Manages references to different states, and makes operations defined on the
active one.

Behavioral Design Patterns: Continuous

[156]

Pattern scope
State Pattern usually applies to the code of scopes with the size of a feature. It does not
specify whom to transfer the state of context: it could be either the context itself, the state
methods, or code that controls context.

Implementation
Start with the State interface (it could also be an abstract class if there are operations or
logic to share):

interface State {
 render(hover: boolean): void;
 click(): void;
}

With the State interface defined, we can move to Context and sketch its outline:

class Context {
 $element: JQuery;

 state: State;

 private render(hover: boolean): void {
 this.state.render(hover);
 }

 private click(): void {
 this.state.click();
 }
 onclick(): void {
 console.log('I am clicked.');
 }
}

Now we are going to have the two states, StateEnabled and StateDisabled
implemented. First, let's address StateEnabled, it cares about hover status and handles
click event:

class StateEnabled implements State {
 constructor(
 public context: Context
) { }

 render(hover: boolean): void {

Behavioral Design Patterns: Continuous

[157]

 this
 .context
 .$element
 .removeClass('disabled')
 .toggleClass('hover', hover);
 }

 click(): void {
 this.context.onclick();
 }
}

Next, for StateDisabled it just ignores hover parameter and does nothing when click
event emits:

class StateDisabled implements State {
 constructor(
 public context: Context
) { }

 render(): void {
 this
 .context
 .$element
 .addClass('disabled')
 .removeClass('hover');
 }

 click(): void {
 // Do nothing.
 }
}

Now we have classes of states enabled and disabled ready. As the instances of those classes
are associated with the context, we need to initialize every state when a new Context is
initiated:

class Context {
 ...

 private stateEnabled = new StateEnabled(this);
 private stateDisabled = new StateDisabled(this);

 state: State = this.stateEnabled;
 ...
}

Behavioral Design Patterns: Continuous

[158]

It is possible to use flyweights by passing context in when invoking every operation on the
active state as well.

Now let's finish the Context by listening to and forwarding proper events:

constructor() {
 this
 .$element
 .hover(
 () => this.render(true),
 () => this.render(false)
)
 .click(() => this.click());

 this.render(false);
}

Consequences
State Pattern reduces conditional branches in potentially multiple methods of context
objects. As a trade-off, extra state objects are introduced, though it usually won't be a big
problem.

The context object in State Pattern usually delegates operations and forwards them to the
current state object. Thus operations defined by a concrete state may have access to the
context itself. This makes reusing state objects possible with flyweights.

Template Method Pattern
When we are talking about subclassing or inheriting, the building is usually built from the
bottom up. Subclasses inherit the basis and then provide more. However, it could be useful
to reverse the structure sometimes as well.

Consider Strategy Pattern which defines the outline of a process and has interchangeable
algorithms as strategies. If we apply this structure under the hierarchy of classes, we will
have Template Method Pattern.

Behavioral Design Patterns: Continuous

[159]

A template method is an abstract method (optionally with default implementation) and acts
as a placeholder under the outline of a larger process. Subclasses override or implement
related methods to modify or complete the behaviors. Imaging the skeleton of a
TextReader, we are expecting its subclasses to handle text files from different storage
media, detect different encodings and read all the text. We may consider a structure like
this:

The TextReader in this example has a method readAllText that reads all text from a
resource by two steps: reading all bytes from the resource (readAllBytes), and then
decoding those bytes with certain encoding (decodeBytes).

The structure also suggests the possibility of sharing implementations among concrete
classes that implement template methods. We may create an abstract class
AsciiTextReader that extends TextReader and implements method decodeBytes. And
build concrete classes FileAsciiTextReader and HttpAsciiTextReader that extend
AsciiTextReader and implement method readAllBytes to handle resources on different
storage media.

Participants
The participants of Template Method Pattern include the following:

Abstract class: TextReader

Defines the signatures of template methods, as well as the outline of
algorithms that weave everything together.

Behavioral Design Patterns: Continuous

[160]

Concrete classes: AsciiTextReader, FileAsciiTextReader and
HttpAsciiTextReader

Implements template methods defined in abstract classes. Typical concrete
classes are FileAsciiTextReader and HttpAsciiTextReader in this
example. However, compared to being abstract, defining the outline of
algorithms weighs more in the categorization.

Pattern scope
Template Method Pattern is usually applied in a relatively small scope. It provides an
extendable way to implement features and avoid redundancy from the upper structure of a
series of algorithms.

Implementation
There are two levels of the inheriting hierarchy: the AsciiTextReader will subclass
TextReader as another abstract class. It implements method decodeBytes but leaves
readAllBytes to its subclasses. Starting with the TextReader:

abstract class TextReader {
 async readAllText(): Promise<string> {
 let bytes = await this.readAllBytes();
 let text = this.decodeBytes(bytes);

 return text;
 }

 abstract async readAllBytes(): Promise<Buffer>;

 abstract decodeBytes(bytes: Buffer): string;
}

We are using Promises with async and await which are coming to
ECMAScript next. Please refer to the following links for more information:
h t t p s : / / g i t h u b . c o m / M i c r o s o f t / T y p e S c r i p t / i s s u e s / 1 6 6 4
h t t p s : / / t c 3 9 . g i t h u b . i o / e c m a s c r i p t - a s y n c a w a i t /

https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/

Behavioral Design Patterns: Continuous

[161]

And now let's subclass TextReader as AsciiTextReader which still remains abstract:

abstract class AsciiTextReader extends TextReader {
 decodeBytes(bytes: Buffer): string {
 return bytes.toString('ascii');
 }
}

For FileAsciiTextReader, we'll need to import filesystem (fs) module of Node.js to
perform file reading:

import * as FS from 'fs';

class FileAsciiTextReader extends AsciiTextReader {
 constructor(
 public path: string
) {
 super();
 }

 async readAllBytes(): Promise<Buffer> {
 return new Promise<Buffer>((resolve, reject) => {
 FS.readFile(this.path, (error, bytes) => {
 if (error) {
 reject(error);
 } else {
 resolve(bytes);
 }
 });
 });
 }
}

For HttpAsciiTextReader, we are going to use a popular package request to send HTTP
requests:

import * as request from 'request';

class HttpAsciiTextReader extends AsciiTextReader {
 constructor(
 public url: string
) {
 super();
 }

 async readAllBytes(): Promise<Buffer> {
 return new Promise<Buffer>((resolve, reject) => {
 request(this.url, {

Behavioral Design Patterns: Continuous

[162]

 encoding: null
 }, (error, bytes, body) => {
 if (error) {
 reject(error);
 } else {
 resolve(body);
 }
 });
 });
 }
}

Both concrete reader implementations pass resolver functions to the
Promise constructor for converting asynchronous Node.js style callbacks
to Promises. For more information, read more about the Promise
constructor : h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c

r i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / P r o m i s e.

Consequences
Compared to Strategy Pattern, Template Method Pattern provides convenience for building
objects with the same outline of algorithms outside of the existing system. This makes
Template Method Pattern a useful way to build tooling classes instead of fixed processes
built-in.

But Template Method Pattern has less runtime flexibility as it does not have a manager. It
also relies on the client who's using those objects to do the work. And as the
implementation of Template Method Pattern relies on subclassing, it could easily result in
hierarchies that have a similar code on different branches. Though this could be optimized
by using techniques like mixin.

Observer Pattern
Observer Pattern is an important Pattern backed by an important idea in software
engineering. And it is usually a key part of MVC architecture and its variants as well.

If you have ever written an application with a rich user interface without a framework like
Angular or a solution with React, you might probably have struggled with changing class
names and other properties of UI elements. More specifically, the code that controls those
properties of the same group of elements lies every branch related to the elements in related
event listeners, just to keep the elements being correctly updated.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Behavioral Design Patterns: Continuous

[163]

Consider a “Do” button of which the disabled property should be determined by the
status of a WebSocket connection to a server and whether the currently active item is done.
Every time the status of either the connection or the active item gets updated, we'll need to
update the button correspondingly. The most “handy” way could be two somewhat
identical groups of code being put in two event listeners. But in this way, the amount of
similar code would just keep growing as more relevant objects get involved.

The problem in this “Do” button example is that, the behavior of code that's controlling the
button is driven by primitive events. The heavy load of managing the connections and
behaviors among different events is directly taken by the developer who's writing that code.
And unfortunately, the complexity in this case, grows exponentially, which means it could
easily exceed our brain capacity. Writing code this way might result in more bugs and make
maintaining much likely to introduce new bugs.

But the beautiful thing is, we can find the factors that multiply and output the desired
result, and the reference for dividing those factors are groups of related states. Still speaking
of the “Do” button example, what the button cares about is: connection status and the active
item status (assuming they are booleans connected and loaded). We can have the code
written as two parts: one part that changes those states, and another part that updates the
button:

let button = document.getElementById('do-button');

let connected = false;
let loaded = false;

function updateButton() {
 let disabled = !connected && !loaded;
 button.disabled = disabled;
}

connection.on('statuschange', event => {
 connected = event.connected;
 updateButton();
});

activeItem.on('statuschange', event => {
 loaded = event.loaded;
 updateButton();
});

Behavioral Design Patterns: Continuous

[164]

The preceding sample code already has the embryo of Observer Pattern: the subjects (states
connected and loaded) and the observer (updateButton function), though we still need
to call updateButton manually every time any related state changes. An improved
structure could look like the following figure:

But just like the example we've been talking about, observers in many situations care about
more than one state. It could be less satisfying to have subjects attach observers separately.

A solution to this could be multi-state subjects, to achieve that, we can form a composite
subject that contains sub-subjects. If a subject receives a notify call, it wakes up its
observers and at the same time notifies its parent. Thus the observer can attach one
composite subject for notifications of changes that happen to multiple states.

Behavioral Design Patterns: Continuous

[165]

However, the process of creating the composite itself could still be annoying. In dynamic
programming languages like JavaScript, we may have a state manager that contains specific
states handling notifications and attaching observers directly with implicit creations of
subjects:

let stateManager = new StateManager({
 connected: false,
 loaded: false,
 foo: 'abc',
 bar: 123
});

stateManager.on(['connected', 'loaded'], () => {
 let disabled =
 !stateManager.connected && !stateManager.loaded;
 button.disabled = disabled;
});

In many MV* frameworks, the states to be observed are analyzed
automatically from related expressions by built-in parsers or similar
mechanisms.

And now the structure gets even simpler:

Behavioral Design Patterns: Continuous

[166]

Participants
We've talked about the basic structure of Observer Pattern with subjects and observers, and
a variant with implicit subjects. The participants of the basic structure include the following:

Subject

Subject to be observed. Defines methods to attach or notify observers. A
subject could also be a composite that contains sub-subjects, which allows
multiple states to be observed with the same interface.

Concrete subject: ConnectedSubject and LoadedSubject

Contains state related to the subject, and implements methods or properties
to get and set their state.

Observer

Defines the interface of an object that reacts when an observation notifies. In
JavaScript, it could also be an interface (or signature) of a function.

Concrete observer: DoButtonObserver

Defines the action that reacts to the notifications of subjects being observed.
Could be a callback function that matches the signature defined.

In the variant version, the participants include the following:

State manager

Manages a complex, possibly multi-level state object containing multiple
states. Defines the interface to attach observers with subjects, and notifies
those observers when a subject changes.

Concrete subject

Keys to specific states. For example, string "connected" may represent state
stateManager.connected, while string "foo.bar" may represent state
stateManager.foo.bar.

Observer and concrete observer are basically the same as described in the former structure. But
observers are now notified by the state manager instead of subject objects.

Behavioral Design Patterns: Continuous

[167]

Pattern scope
Observer Pattern is a pattern that may easily structure half of the project. In MV*
architectures, Observer Pattern can decouple the view from business logic. The concept of
view can be applied to other scenarios related to displaying information as well.

Implementation
Both of the structures we've mentioned should not be hard to implement, though more
details should be put into consideration for production code. We'll go with the second
implementation that has a central state manager.

To simplify the implementation, we will use get and set methods to
access specific states by their keys. But many frameworks available might
handle those through getters and setters, or other mechanisms.

To learn about how frameworks like Angular handle states changing,
please read their documentation or source code if necessary.

We are going to have StateManager inherit EventEmitter, so we don't need to care much
about issues like multiple listeners. But as we are accepting multiple state keys as subjects,
an overload to method on will be added. Thus the outline of StateManager would be as
follows:

type Observer = () => void;

class StateManager extends EventEmitter{
 constructor(
 private state: any
) {
 super();
 }

 set(key: string, value: any): void { }

 get(key: string): any { }

 on(state: string, listener: Observer): this;
 on(states: string[], listener: Observer): this;
 on(states: string | string[], listener: Observer): this { }
}

Behavioral Design Patterns: Continuous

[168]

You might have noticed that method on has the return type this, which
may keep referring to the type of current instance. Type this is very
helpful for chaining methods.

The keys will be "foo" and "foo.bar", we need to split a key as separate identifiers for
accessing the value from the state object. Let's have a private _get method that takes an
array of identifiers as input:

private _get(identifiers: string[]): any {
 let node = this.state;

 for (let identifier of identifiers) {
 node = node[identifier];
 }

 return node;
}

Now we can implement method get upon _get:

get(key: string): any {
 let identifiers = key.split('.');
 return this._get(identifiers);
}

For method set, we can get the parent object of the last identifier of property to be set, so
things work like this:

set(key: string, value: any): void {
 let identifiers = key.split('.');
 let lastIndex = identifiers.length - 1;

 let node = this._get(identifiers.slice(0, lastIndex));
 node[identifiers[lastIndex]] = value;
}

But there's one more thing, we need to notify observers that are observing a certain subject:

set(key: string, value: any): void {
 let identifiers = key.split('.');
 let lastIndex = identifiers.length - 1;

 let node = this._get(identifiers.slice(0, lastIndex));
 node[identifiers[lastIndex]] = value;

 for (let i = identifiers.length; i > 0; i--) {

Behavioral Design Patterns: Continuous

[169]

 let key = identifiers.slice(0, i).join('.');
 this.emit(key);
 }
}

When we're done with the notifying part, let's add an overload for method on to support
multiple keys:

on(state: string, listener: Observer): this;
on(states: string[], listener: Observer): this;
on(states: string | string[], listener: Observer): this {
 if (typeof states === 'string') {
 super.on(states, listener);
 } else {
 for (let state of states) {
 super.on(state, listener);
 }
 }

 return this;
}

Problem solved. Now we have a state manager that will work for simple scenarios.

Consequences
Observer Pattern decouples subjects with observers. While an observer may be observing
multiple states in subjects at the same time, it usually does not care about which state
triggers the notification. As a result, the observer may make unnecessary updates that
actually do nothing to – for example – the view.

However, the impact on performance could be negligible most of the time, not even need to
mention the benefits it brings.

By splitting view and logic apart, Observer Pattern may reduce possible branches
significantly. This will help eliminate bugs caused at the coupling part between view and
logic. Thus, by properly applying Observer Pattern, the project will be made much more
robust and easier to maintain.

Behavioral Design Patterns: Continuous

[170]

However, there are some details we still need care about:

The observer that updates the state could cause circular invocation.1.
For more complex data structures like collections, it might be expensive to re-2.
render everything. Observers in this scenario may need more information about
the change to only perform necessary updates. View implementations like React
do this in another way; they introduce a concept called Virtual DOM. By
updating and diffing the virtual DOM before re-rendering the actual DOM
(which could usually be the bottleneck of performance), it provides a relatively
general solution for different data structures.

Visitor Pattern
Visitor Pattern provides a uniformed interface for visiting different data or objects while
allowing detailed operations in concrete visitors to vary. Visitor Pattern is usually used with
composites, and it is widely used for walking through data structures like abstract syntax
tree (AST). But to make it easier for those who are not familiar with compiler stuff, we will
provide a simpler example.

Consider a DOM-like tree containing multiple elements to render:

[
 Text {
 content: "Hello, "
 },
 BoldText {
 content: "TypeScript"
 },
 Text {
 content: "! Popular editors:\n"
 },
 UnorderedList {
 items: [
 ListItem {
 content: "Visual Studio Code"
 },
 ListItem {
 content: "Visual Studio"
 },
 ListItem {
 content: "WebStorm"
 }
]
 }

Behavioral Design Patterns: Continuous

[171]

]

The rendering result in HTML would look like this:

While in Markdown, it would look like this:

Visitor Pattern allows operations in the same category to be coded in the same place. We'll
have concrete visitors, HTMLVisitor and MarkdownVisitor that take the responsibilities
of transforming different nodes by visiting them respectively and recursively. The nodes
being visited have a method accept for accepting a visitor to perform the
transformation. An overall structure of Visitor Pattern could be split into two parts, the first
part is the visitor abstraction and its concrete subclasses:

Behavioral Design Patterns: Continuous

[172]

The second part is the abstraction and concrete subclasses of nodes to be visited:

Participants
The participants of Visitor Pattern include the following:

Visitor: NodeVisitor

Defines the interface of operations corresponding to each element class. In
languages with static types and method overloading, the method names can
be unified. But as it takes extra runtime checking in JavaScript, we'll use
different method names to distinguish them. The operation methods are
usually named after visit, but here we use append as its more related to the
context.

Concrete visitor: HTMLVisitor and MarkdownVisitor

Implements every operation of the concrete visitor, and handles internal
states if any.

Element: Node

Defines the interface of the element accepting the visitor instance. The
method is usually named accept, though here we are using appendTo for a
better matching with the context. Elements could themselves be composites
and pass visitors on with their child elements.

Behavioral Design Patterns: Continuous

[173]

Concrete element: Text, BoldText, UnorderedList and ListItem

Implements accept method and calls the method from the visitor instance
corresponding to the element instance itself.

Client:

Enumerates elements and applies visitors to them.

Pattern scope
Visitor Pattern can form a large feature inside a system. For some programs under certain
categories, it may also form the core architecture. For example, Babel uses Visitor Pattern for
AST transforming and a plugin for Babel is actually a visitor that can visit and transform
elements it cares about.

Implementation
We are going to implement HTMLVisitor and MarkdownVisitor which may transform
nodes to text, as we've talked about. Start with the upper abstraction:

interface Node {
 appendTo(visitor: NodeVisitor): void;
}

interface NodeVisitor {
 appendText(text: Text): void;
 appendBold(text: BoldText): void;
 appendUnorderedList(list: UnorderedList): void;
 appendListItem(item: ListItem): void;
}

Continue with concrete nodes that do similar things, Text and BoldText:

class Text implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendText(this);
 }
}

Behavioral Design Patterns: Continuous

[174]

class BoldText implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendBold(this);
 }
}

And list stuff:

class UnorderedList implements Node {
 constructor(
 public items: ListItem[]
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendUnorderedList(this);
 }
}

class ListItem implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendListItem(this);
 }
}

Now we have the elements of a structure to be visited, we'll begin to implement concrete
visitors. Those visitors will have an output property for the transformed string.
HTMLVisitor goes first:

class HTMLVisitor implements NodeVisitor {
 output = '';

 appendText(text: Text) {
 this.output += text.content;
 }

 appendBold(text: BoldText) {
 this.output += `${text.content}`;
 }

 appendUnorderedList(list: UnorderedList) {

Behavioral Design Patterns: Continuous

[175]

 this.output += '';

 for (let item of list.items) {
 item.appendTo(this);
 }

 this.output += '';
 }

 appendListItem(item: ListItem) {
 this.output += `${item.content}`;
 }
}

Pay attention to the loop inside appendUnorderedList, it handles visiting of its own list
items.

A similar structure applies to MarkdownVisitor:

class MarkdownVisitor implements NodeVisitor {
 output = '';

 appendText(text: Text) {
 this.output += text.content;
 }

 appendBold(text: BoldText) {
 this.output += `**${text.content}**`;
 }

 appendUnorderedList(list: UnorderedList) {
 this.output += '\n';

 for (let item of list.items) {
 item.appendTo(this);
 }
 }

 appendListItem(item: ListItem) {
 this.output += `- ${item.content}\n`;
 }
}

Now the infrastructures are ready, let's create the tree-like structure we've been imagining
since the beginning:

let nodes = [
 new Text('Hello, '),

Behavioral Design Patterns: Continuous

[176]

 new BoldText('TypeScript'),
 new Text('! Popular editors:\n'),
 new UnorderedList([
 new ListItem('Visual Studio Code'),
 new ListItem('Visual Studio'),
 new ListItem('WebStorm')
])
];

And finally, build the outputs with visitors:

let htmlVisitor = new HTMLVisitor();
let markdownVisitor = new MarkdownVisitor();

for (let node of nodes) {
 node.appendTo(htmlVisitor);
 node.appendTo(markdownVisitor);
}

console.log(htmlVisitor.output);
console.log(markdownVisitor.output);

Consequences
Both Strategy Pattern and Visitor Pattern could be applied to scenarios of processing
objects. But Strategy Pattern relies on clients to handle all related arguments and contexts,
this makes it hard to come out with an exquisite abstraction if the expected behaviors of
different objects differ a lot. Visitor Pattern solves this problem by decoupling visit actions
and operations to be performed.

By passing different visitors, Visitor Pattern can apply different operations to objects
without changing other code although it usually means adding new elements and would
result in adding related operations to an abstract visitor and all of its concrete subclasses.

Visitors like the NodeVisitor in the previous example may store state itself (in that
example, we stored the output of transformed nodes) and more advanced operations can be
applied based on the state accumulated. For example, it's possible to determine what has
been appended to the output, and thus we can apply different behaviors with the node
currently being visited.

However, to complete certain operations, extra public methods may need to be exposed
from the elements.

Behavioral Design Patterns: Continuous

[177]

Summary
In this chapter, we've talked about other behavior design patterns as complements to the
former chapter, including Strategy, State, Template Method, Observer and Visitor Pattern.

Strategy Pattern is so common and useful that it may appear in a project several times, with
different forms. And you might not know you were using Observer Pattern with
implementation in a daily framework.

After walking through those patterns, you might find there are many ideas in common
behind each pattern. It is worth thinking what's behind them and even letting the outline go
in your mind.

In the next chapter, we'll continue with some handy patterns related to JavaScript and
TypeScript, and important scenarios of those languages.

7
Patterns and Architectures in

JavaScript and TypeScript
In the previous four chapters, we've walked through common and classical design patterns
and discussed some of their variants in JavaScript or TypeScript. In this chapter, we'll
continue with some architecture and patterns closely related to the language and their
common applications. We don't have many pages to expand and certainly cannot cover
everything in a single chapter, so please take it as an appetizer and feel free to explore more.

Many topics in this chapter are related to asynchronous programming. We'll start with a
web architecture for Node.js that's based on Promise. This is a larger topic that has
interesting ideas involved, including abstractions of responses and permissions, as well as
error handling tips. Then we'll talk about how to organize modules with ECMAScript (ES)
module syntax. And this chapter will end with several useful asynchronous techniques.

Overall, we'll have the following topics covered in this chapter:

Architecture and techniques related to Promise
Abstraction of responses and permissions in a web application
Modularizing a project to scale
Other useful asynchronous techniques

Again, due to the limited length, some of the related code is aggressively
simplified and nothing more than the idea itself can be applied practically.

Patterns and Architectures in JavaScript and TypeScript

[179]

Promise-based web architecture
To have a better understanding of the differences between Promises and traditional
callbacks, consider an asynchronous task like this:

function process(callback) {
 stepOne((error, resultOne) => {
 if (error) {
 callback(error);
 return;
 }

 stepTwo(resultOne, (error, resultTwo) => {
 if (error) {
 callback(error);
 return;
 }

 callback(undefined, resultTwo + 1);
 });
 });
}

If we write preceding above in Promise style, it would be as follows:

function process() {
 return stepOne()
 .then(result => stepTwo(result))
.then(result => result + 1);
}

As in the preceding example, Promise makes it easy and natural to write asynchronous
operations with a flat chain instead of nested callbacks. But the most exciting thing about
Promise might be the benefits it brings to error handling. In a Promise-based architecture,
throwing an error can be safe and pleasant. You don't have to explicitly handle errors when
chaining asynchronous operations, and this makes mistakes less likely to happen.

With the growing usage with ES6 compatible runtimes, Promise is already there out of the
box. And we actually have plenty of polyfills for Promises (including my ThenFail written
in TypeScript), as people who write JavaScript roughly refer to the same group of people
who created wheels.

Patterns and Architectures in JavaScript and TypeScript

[180]

Promises work well with other Promises:

A Promises/A+ -compatible implementation should work with other Promises/A+ -
compatible implementations
Promises work best in a Promise-based architecture

If you are new to Promise, you might be complaining about using Promises with a callback-
based project. Using asynchronous helpers such as Promise.each (non-standard) provided
by Promise libraries is a common reason for people to try out Promise, but it turns out they
have better alternatives (for a callback-based project) such as the popular async library.

The reason that makes you decide to switch should not be these helpers (as there are a lot of
them for old-school callbacks as well), but an easier way to handle errors or to take
advantage of the ES async/await feature, which is based on Promise.

Promisifying existing modules or libraries
Though Promises do best in a Promise-based architecture, it is still possible to begin using
Promise with a smaller scope by promisifying existing modules or libraries.

Let's take Node.js style callbacks as an example:

import * as FS from 'fs';

FS.readFile('some-file.txt', 'utf-8', (error, text) => {
 if (error) {
 console.error(error);
 return;
 }

 console.log('Content:', text);
});

You may expect a promisified version of the readFile function to look like the following:

FS
 .readFile('some-file.txt', 'utf-8')
 .then(text => {
 console.log('Content:', text);
 })
 .catch(reason => {
 Console.error(reason);
 });

Patterns and Architectures in JavaScript and TypeScript

[181]

The implementation of the promisified function readFile can be easy:

function readFile(path: string, options: any): Promise<string> {
 return new Promise((resolve, reject) => {
 FS.readFile(path, options, (error, result) => {
 if (error) {
 reject(error);
 } else {
 resolve(result);
 }
 });
 });
}

I am using the type any here for parameter options to reduce the size of
the code example, but I would suggest not using any whenever possible in
practice.

There are libraries that are able to promisify methods automatically. Though, unfortunately,
you might need to write declaration files yourself for the promisified methods if there are
no promisified version available.

Views and controllers in Express
Many of us may have already worked with frameworks such as Express. And this is how
we render a view or response with JSON in Express:

import * as Path from 'path';
import * as express from 'express';

let app = express();

app.set('engine', 'hbs');
app.set('views', Path.join(__dirname, '../views'));

app.get('/page', (req, res) => {
 res.render('page', {
 title: 'Hello, Express!',
 content: '...'
 });
});

app.get('/data', (req, res) => {
 res.json({

Patterns and Architectures in JavaScript and TypeScript

[182]

 version: '0.0.0',
 items: []
 });
});

app.listen(1337);

We will usually separate controllers from the routing configuration:

import { Request, Response } from 'express';

export function page(req: Request, res: Response): void {
 res.render('page', {
 title: 'Hello, Express!',
 content: '...'
 });
}

Thus we may have a better idea of existing routes, and have controllers managed more
easily. Furthermore, automated routing could be introduced so that we don't always need
to update routing manually:

import * as glob from 'glob';

let controllersDir = Path.join(__dirname, 'controllers');

let controllerPaths = glob.sync('**/*.js', {
 cwd: controllersDir
});

for (let path of controllerPaths) {
 let controller = require(Path.join(controllersDir, path));
 let urlPath = path.replace(/\\/g, '/').replace(/\.js$/, '');

 for (let actionName of Object.keys(controller)) {
 app.get(
 `/${urlPath}/${actionName}`,
 controller[actionName]
);
 }
}

The implementation above is certainly too simple to cover daily use, but it shows a rough
idea of how automated routing could work: via conventions based on file structures.

Patterns and Architectures in JavaScript and TypeScript

[183]

Now, if we are working with asynchronous code written in Promises, an action in the
controller could be like the following:

export function foo(req: Request, res: Response): void {
 Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 res.render('foo', {
 post,
 comments
 });
 });
}

We are destructuring an array within a parameter. Promise.all returns
a Promise of an array with elements corresponding to the values of the
resolvables passed in. (A resolvable means a normal value or a Promise-
like object that may resolve to a normal value.)

But that's not enough; we still need to handle errors properly, or in some Promise
implementations, the preceding code may fail in silence because the Promise chain is not
handled by a rejection handler (which is terrible). In Express, when an error occurs, you
should call next (the third argument passed into the callback) with the error object:

import { Request, Response, NextFunction } from 'express';

export function foo(
 req: Request,
 res: Response,
 next: NextFunction
): void {
 Promise
 // ...
 .catch(reason => next(reason));
}

Now, we are fine with the correctness of this approach, but that's simply not how Promises
work. Explicit error handling with callbacks could be eliminated in the scope of controllers,
and the easiest way is to return the Promise chain and hand over to code that was
previously doing routing logic. So the controller could be written like this:

export function foo(req: Request, res: Response) {
 return Promise
 .all([

Patterns and Architectures in JavaScript and TypeScript

[184]

 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 res.render('foo', {
 post,
 comments
 });
 });
}

But, could we make it even better?

Abstraction of responses
We've already been returning a Promise to tell whether an error occurs. So now the
returned Promise indicates the status of the response: success or failure. But why we are
still calling res.render() for rendering the view? The returned promise object could be
the response itself rather than just an error indicator.

Think about the controller again:

export class Response { }

export class PageResponse extends Response {
 constructor(view: string, data: any) { }
}

export function foo(req: Request) {
 return Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 return new PageResponse('foo', {
 post,
 comments
 });
 });
}

The response object returned could vary for different response outputs. For example, it
could be either a PageResponse like it is in the preceding example, a JSONResponse, a
StreamResponse, or even a simple Redirection.

Patterns and Architectures in JavaScript and TypeScript

[185]

As, in most cases, PageResponse or JSONResponse is applied, and the view of a
PageResponse can usually be implied by the controller path and action name, it is useful to
have those two responses automatically generated from a plain data object with a proper
view to render with:

export function foo(req: Request) {
 return Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 return {
 post,
 comments
 };
 });
}

And that's how a Promise-based controller should respond. With this idea, let's update the
routing code with the abstraction of responses. Previously, we were passing controller
actions directly as Express request handlers. Now we need to do some wrapping up with
the actions by resolving the return value, and applying operations based on the resolved
result:

If it fulfils and it's an instance of Response, apply it to the res object passed in1.
by Express.
If it fulfils and it's a plain object, construct a PageResponse or a JSONResponse2.
if no view found and apply it to the res object.
If it rejects, call the next function with the reason.3.

Previously, it was like this:

app.get(`/${urlPath}/${actionName}`, controller[actionName]);

Now it gets a few more lines:

let action = controller[actionName];

app.get(`/${urlPath}/${actionName}`, (req, res, next) => {
 Promise
 .resolve(action(req))
 .then(result => {
 if (result instanceof Response) {
 result.applyTo(res);

Patterns and Architectures in JavaScript and TypeScript

[186]

 } else if (existsView(actionName)) {
 new PageResponse(actionName, result).applyTo(res);
 } else {
 new JSONResponse(result).applyTo(res);
 }
 })
 .catch(reason => next(reason));
});

However, so far we can handle only GET requests as we hardcoded app.get() in our
router implementation. The poor view-matching logic can hardly be used in practice either.
We need to make the actions configurable, and ES decorators could do nice work here:

export default class Controller {
 @get({
 view: 'custom-view-path'
 })
 foo(req: Request) {
 return {
 title: 'Action foo',
 content: 'Content of action foo'
 };
 }
}

I'll leave the implementation to you, and feel free to make it awesome.

Abstraction of permissions
Permissions play an important role in a project, especially in systems that have different
user groups, for example, a forum. The abstraction of permissions should be extendable to
satisfy changing requirements, and it should be easy to use as well.

Here, we are going to talk about the abstraction of permission in the level of controller
actions. Consider the legibility of performing one or more actions as a privilege. The
permission of a user may consist of several privileges and usually most users at the same
level would have the same set of privileges. So we may have a larger concept, namely
groups.

The abstraction could either work based on both groups and privileges or based on
privileges only (groups are then just aliases to sets of privileges):

Abstractions that validate based on privileges and groups at the same time is
easier to build. You do not need to create a large list of which actions can be
performed for a certain group of users; granular privileges are only required

Patterns and Architectures in JavaScript and TypeScript

[187]

when necessary.
Abstractions that validate based on privileges have better control and more
flexibility for describing the permission. For example, you can remove a small set
of privileges from the permission of a user easily.

However, both approaches have similar upper-level abstractions and differ mostly in
implementation. The general structure of the permission abstractions we've talked about is
as follows:

The participants include the following:

Privilege: Describes detailed privileges corresponding to specific actions
Group: Defines a set of privileges
Permission: Describes what a user is capable of doing; consists of groups the user
belongs to and privileges the user has
Permission descriptor: Describes how the permission of a user would be
sufficient; consists of possible groups and privileges

Expected errors
A great concern wiped away by using Promises is that we do not need to worry about
throwing an error in a callback would crash the application most of the time. The error
will flow through the Promises chain and, if not caught, will be handled by our router.
Errors can be roughly divided into expected errors and unexpected errors. Expected errors
are usually caused by incorrect input or foreseeable exceptions, and unexpected errors are
usually caused by bugs or other libraries the project relies on.

Patterns and Architectures in JavaScript and TypeScript

[188]

For expected errors, we usually want to give user-friendly responses with readable error
messages and codes, so that users can help themselves to find solutions or report to us with
useful context. For unexpected errors, we would also want reasonable responses (usually
messages described as unknown errors), a detailed server-side log (including the real error
name, message, stack information, and so on), and even alarms for getting the team notified
as soon as possible.

Defining and throwing expected errors
The router will need to handle different types of errors, and an easy way to achieve that is
to subclass a universal ExpectedError class and throw its instances out:

import ExtendableError from 'extendable-error';

class ExpectedError extends ExtendableError {
 constructor(
 message: string,
 public code: number
) {
 super(message);
 }
}

The extendable-error is a package of mine that handles stack trace and
the message property. You can directly extend the Error class as well.

Thus, when receiving an expected error, we can safely output its message as part of the
response. And if it's not an instance of ExpectedError, we can then output predefined
unknown error messages and have detailed error information logged.

Transforming errors
Some errors, such as those caused by unstable networks or remote services, are expected;
we may want to catch those errors and throw them out again as expected errors. But it is
rather trivial to actually do that. A centralized error-transforming process can then be
applied to reduce the efforts required to manage those errors.

Patterns and Architectures in JavaScript and TypeScript

[189]

The transforming process includes two parts: filtering (or matching) and transforming.
There are many approaches to filter errors, such as the following:

Filter by error class: Many third-party libraries throw errors of certain classes.
Taking Sequelize (a popular Node.js ORM) as an example, it throws
DatabaseError, ConnectionError, ValidationError, and so on. By filtering
errors by checking whether they are instances of a certain error class, we may
easily pick up target errors from the pile.
Filter by string or regular expression: Sometimes a library might be throwing
errors that are instances of an Error class itself instead of its subclasses; this
makes those errors harder to distinguish from others. In this situation, we may
filter those errors by their message, with keywords or regular expressions.
Filter by scope: It's possible that instances of the same error class with the same
error message should result in different responses. One of the reasons might be
that the operation that throws a certain error is at a lower level, but is being used
by upper structures within different scopes. Thus, a scope mark could be added
for those errors and make them easier to be filtered.

There could be more ways to filter errors, and they are usually able to cooperate as well. By
properly applying those filters and transforming errors, we can reduce noise for analyzing
what's going on within a system and locate problems faster if they show up.

Modularizing project
Before ES6, there were a lot of module solutions for JavaScript that worked. The two most
famous of them are AMD and commonjs. AMD is designed for asynchronous module
loading, which is mostly applied in browsers, while commonjs does module loading
synchronously, and that's the way the Node.js module system works.

To make it work asynchronously, writing an AMD module takes more characters. And due
to the popularity of tools such as browserify and webpack, commonjs becomes popular
even for browser projects.

The proper granularity of internal modules could help a project keep its structure healthy.
Consider a project structure like this:

project
├─controllers
├─core
│ │ index.ts
│ │

Patterns and Architectures in JavaScript and TypeScript

[190]

│ ├─product
│ │ index.ts
│ │ order.ts
│ │ shipping.ts
│ │
│ └─user
│ index.ts
│ account.ts
│ statistics.ts
│
├─helpers
├─models
├─utils
└─views

Assume we are writing a controller file that's going to import a module defined by the
core/product/order.ts file. Previously, with the commonjs require style, we would
want to write the following:

const Order = require('../core/product/order');

Now, with the new ES import syntax, it would be as follows:

import * as Order from '../core/product/order';

Wait, isn't that essentially the same? Sort of. But you may have noticed several index.ts
files I've put into folders. Now, in the file core/product/index.ts, we can have the
following:

import * as Order from './order';
import * as Shipping from './shipping';

export { Order, Shipping }

Alternatively, we could have the following:

export * from './order';
export * from './shipping';

What's the difference? The ideas behind those two approaches of re-exporting modules can
vary. The first style works better when we treat Order and Shipping as namespaces, under
which the entity names may not be easy to distinguish from one group to another. With this
style, the files are the natural boundaries of building those namespaces. The second style
weakens the namespace property of two files and uses them as tools to organize objects and
classes under the same larger category.

Patterns and Architectures in JavaScript and TypeScript

[191]

A good thing about using those files as namespaces is that multiple-level re-exporting is
fine while weakening namespaces makes it harder to understand different identifier names
as the number of re-exporting levels grows.

Asynchronous patterns
When we are writing JavaScript with network or file system I/O, there is a 95% chance that
we are doing it asynchronously. However, an asynchronous code may tremendously
decrease the determinability at the dimension of time. But we are so lucky that JavaScript is
usually single-threaded; this makes it possible for us to write predictable code without
mechanisms such as locks most of the time.

Writing predictable code
The predictable code relies on predictable tools (if you are using any). Consider a helper like
this:

type Callback = () => void;

let isReady = false;
let callbacks: Callback[] = [];

setTimeout(() => {
 callbacks.forEach(callback => callback());
 callbacks = undefined;
 }, 100);
export function ready(callback: Callback): void {
 if (!callbacks) {
 callback();
 } else {
 callbacks.push(callback);
 }
}

This module exports a ready function, which will invoke the callbacks passed in when
“ready”. It will assure that callbacks will be called even if added after that. However, you
cannot say for sure whether the callback will be called in the current event loop:

import { ready } from './foo';

let i = 0;

ready(() => {

Patterns and Architectures in JavaScript and TypeScript

[192]

 console.log(i);
});

i++;

In the preceding example, i could either be 0 or 1 when the callback gets called. Again, this
is not wrong, or even bad, it just makes the code less predictable. When someone else reads
this piece of code, he or she will need to consider two possibilities of how this program
would run. To avoid this issue, we can simply wrap up the synchronous invocation with
setImmediate (it may fallback to setTimeout in older browsers):

export function ready(callback: Callback): void {
 if (!callbacks) {
 setImmediate(() => callback());
 } else {
 callbacks.push(callback);
 }
}

Writing predictable code is actually more than writing predictable asynchronous code. The
highlighted line above can also be written as setImmediate(callback), but that would
make people who read your code think twice: how will callback get called and what are
the arguments?

Consider the line of code below:

let results = ['1', '2', '3'].map(parseInt);

What's the value of the array results? Certainly not [1, 2, 3]. Because the callback
passed to the method map receives several arguments: value of current item, index of
current item, and the whole array, while the function parseInt accepts two arguments:
string to parse, and radix. So results are actually the results of the following snippet:

[parseInt('1', 0), parseInt('2', 1), parseInt('3', 2)];

However, it is actually okay to write setImmediate(callback) directly, as the APIs of
those functions (including setTimeout, setInterval, process.nextTick, and so on) are
designed to be used in this way. And it is fair to assume people who are going to maintain
this project know that as well. But for other asynchronous functions whose signatures are
not well known, it is recommended to call them with explicit arguments.

Patterns and Architectures in JavaScript and TypeScript

[193]

Asynchronous creational patterns
We talked about many creational patterns in Chapter 3, Creational Design Patterns. While a
constructor cannot be asynchronous, some of those patterns may have problems applying
to asynchronous scenarios. But others need only slight modifications for asynchronous use.

In Chapter 4, Structural Design Patterns we walked through the Adapter Pattern with a
storage example that opens the database and creates a storage object asynchronously:

class Storage {
 private constructor() { }

 open(): Promise<Storage> {
 return openDatabase()
 .then(db => new Storage(db))
 }
}

And in the Proxy Pattern, we made the storage object immediately available from its
constructor. When a method of the object is called, it waits for the initialization to complete
and finishes the operation:

class Storage {
 private dbPromise: Promise<IDBDatabase>;

 get dbReady(): Promise<IDBDatabase> {
 if (this.dbPromise) {
 return this.dbPromise;
 }
 // ... }

 get<T>(): Promise<T> {
 return this
 .dbReady
 .then(db => {
 // ...
 });
 }
}

A drawback of this approach is that all members that rely on initialization have to be
asynchronous, though most of the time they just are asynchronous.

Patterns and Architectures in JavaScript and TypeScript

[194]

Asynchronous middleware and hooks
The concept of middleware is widely used in frameworks such as Express. Middleware
usually processes its target in serial. In Express, middleware is applied roughly in the order
it is added while there are not different phases. Some other frameworks, however, provide
hooks for different phases in time. For example, there are hooks that will be triggered before
install, after install, after uninstall, and so on.

The middleware mechanism of Express is actually a variant of the Chain
of Responsibility Pattern. And depending on the specific middleware to be
used, it can act more or less like hooks instead of a responsibility chain.

The reasons to implement middleware or hooks vary. They may include the following:

Extensibility: Most of the time, they are applied due to the requirement of
extensibility. New rules and processes could be easily added by new middleware
or hooks.
Decoupling interactions with business logic: A module that should only care
about business logic could need potential interactions with an interface. For
example, we might expect to be able to either enter or update credentials while
processing an operation, without restarting everything. Thus we can create a
middleware or a hook, so that we don't need to have them tightly coupled.

The implementation of asynchronous middleware could be interesting. Take the Promise
version as an example:

type Middleware = (host: Host) => Promise<void>;

class Host {
 middlewares: Middleware[] = [];

 start(): Promise<void> {
 return this
 .middlewares
 .reduce((promise, middleware) => {
 return promise.then(() => middleware(this));
 }, Promise.resolve());
 }
}

Here, we're using reduce to do the trick. We passed in a Promise fulfilled with undefined
as the initial value, and chained it with the result of middleware(this). And this is
actually how the Promise.each helper is implemented in many Promise libraries.

Patterns and Architectures in JavaScript and TypeScript

[195]

Event-based stream parser
When creating an application relies on socket, we usually need a lightweight “protocol” for
the client and server to communicate. Unlike XHR that already handles everything, by
using socket, you will need to define the boundaries so data won't be mixed up.

Data transferred through a socket might be concatenated or split, but TCP connection
ensures the order and correctness of bytes gets transferred. Consider a tiny protocol that
consists of only two parts: a 4-byte unsigned integer followed by a JSON string with byte
length that matches the 4-byte unsigned integer.

For example, for JSON "{}", the data packet would be as follows:

Buffer <00 00 00 02 7b 7d>

To build such a data packet, we just need to convert the JSON string to Buffer (with
encoding such as utf-8, which is default encoding for Node.js), and then prepend its
length:

function buildPacket(data: any): Buffer {
 let json = JSON.stringify(data);
 let jsonBuffer = new Buffer(json);

 let packet = new Buffer(4 + jsonBuffer.length);

 packet.writeUInt32BE(jsonBuffer.length, 0);
 jsonBuffer.copy(packet, 4, 0);

 return packet;
}

A socket client emits a data event when it receives new buffers. Assume we are going to
send the following JSON strings:

// 00 00 00 02 7b 7d
{}

// 00 00 00 0f 7b 22 6b 65 79 22 3a 22 76 61 6c 75 65 22 7d
{"key":"value"}

We may be receiving them like this:

Get two buffers separately; each of them is a complete packet with length and
JSON bytes

Patterns and Architectures in JavaScript and TypeScript

[196]

Get one single buffer with two buffers concatenated
Get two, or more than two, buffers; at least one of the previously sent packets
gets split into several ones.

The entire process is happening asynchronously. But just like the socket client emits a
data event, the parser can just emit its own data event when a complete packet gets
parsed. The parser for parsing our tiny protocol may have only two states, corresponding to
header (JSON byte length) and body (JSON bytes), and the emitting of the data event
happens after successfully parsing the body:

class Parser extends EventEmitter {
 private buffer = new Buffer(0);
 private state = State.header;

 append(buffer: Buffer): void {
 this.buffer = Buffer.concat([this.buffer, buffer]);
 this.parse();
 }

 private parse(): void { }

 private parseHeader(): boolean { }

 private parseBody(): boolean { }
}

Due to the limitation of length, I'm not going to put the complete implementation of the
parser here. For the complete code, please refer to the file src/event-based-parser.ts
in the code bundle of Chapter 7, Patterns and Architectures in JavaScript and TypeScript.

Thus the use of such a parser could be as follows:

import * as Net from 'net';

let parser = new Parser();
let client = Net.connect(port);

client.on('data', (data: Buffer) => {
 parser.append(data);
});

parser.on('data', (data: any) => {
 console.log('Data received:', data);
});

Patterns and Architectures in JavaScript and TypeScript

[197]

Summary
In this chapter, we discussed some interesting ideas and an architecture formed by those
ideas. Most of the topics focus on a small scope and do their own job, but there are also
ideas about putting a whole system together.

The code that implements techniques such as expected error and the approach to managing
modules in a project is not hard to apply. But with proper application, it can bring notable
convenience to the entire project.

However, as I have already mentioned at the beginning of this chapter, there are too many
beautiful things in JavaScript and TypeScript to be covered or even mentioned in a single
chapter. Please don't stop here, and keep exploring.

Many patterns and architectures are the result of some fundamental principles in software
engineering. Those principles might not always be applicable in every scenario, but they
may help when you feel confused. In the next chapter, we are going to talk about SOLID
principles in object-oriented design and find out how those principles may help form a
useful pattern.

8
SOLID Principles

SOLID Principles are well-known Object-Oriented Design (OOD)principles summarized by
Uncle Bob (Robert C. Martin). The word SOLID comes from the initials of the five principles
it refers to, including Single responsibility principle, Open-closed principle, Liskov
substitution principle, Interface segregation principle and Dependency inversion
principle. Those principles are closely related to each other, and can be a great guidance in
practice.

Here is a widely used summary of SOLID principles from Uncle Bob:

Single responsibility principle: A class should have one, and only one, reason to
change
Open-closed principle: You should be able to extend a classes behavior, without
modifying it
Liskov substitution principle: Derived classes must be substitutable for their
base classes
Interface segregation principle: Make fine-grained interfaces that are client
specific
Dependency inversion principle: Depend on abstractions, not on concretions

In this chapter, we will walk through them and find out how those principles can help form
a design that smells nice.

But before we proceed, I want to mention that a few of the reasons why those principles
exist might be related to the age in which they were raised, the languages and their building
or distributing process people were working with, and even computing resources. When
being applied to JavaScript and TypeScript projects nowadays, some of the details may not
be necessary. Think more about what problems those principles want to prevent people
from getting into, rather than the literal descriptions of how a principle should be followed.

SOLID Principles

[199]

Single responsibility principle
The single responsibility principle declares that a class should have one, and only one
reason to change. And the definition of the world reason in this sentence is important.

Example
Consider a Command class that is designed to work with both command-line interface and
graphical user interface:

class Command {
 environment: Environment;

 print(items: ListItem[]) {
 let stdout = this.environment.stdout;
 stdout.write('Items:\n');
 for (let item of items) {
 stdout.write(item.text + '\n');
 }
 }
 render(items: ListItem[]) {
 let element = <List items={items}></List>;
 this.environment.render(element);
 }
 execute() { }
}

To make this actually work, execute method would need to handle both the command
execution and result displaying:

class Command {
 ..
 execute() {
 let items = ...;
 if (this.environment.type === 'cli') {
 this.print(items);
 } else {
 this.render(items);
 }
 }
}

SOLID Principles

[200]

In this example, there are two reasons for changes:

How a command gets executed.1.
How the result of a command gets displayed in different environments.2.

Those reasons lead to changes in different dimensions and violate the single responsibility
principle. This might result in a messy situation over time. A better solution is to have those
two responsibilities separated and managed by the CommandEnvironment:

Does this look familiar to you? Because it is a variant of the Visitor Pattern. Now it is the
environment that executes a specific command and handles its result based on a concrete
environment class.

Choosing an axis
You might be thinking, doesn't CommandResult violate the single responsibility principle
by having the abilities to display content in a different environment? Yes, and no. When the
axis of this reason is set to displaying content, it does not; but if the axis is set to displaying
in a specific environment, it does. But take the overall structure into consideration, the
result of a command is expected to be an output that can adapt to a different environment.
And thus the reason is one-dimensional and confirms the principle.

SOLID Principles

[201]

Open-closed principle
The open-closed principle declares that you should be able to extend a class' behavior,
without modifying it. This principle is raised by Bertrand Meyer in 1988:

Software entities (classes, modules, functions, etc.) should be open for extension, but closed
for modification.

A program depends on all the entities it uses, that means changing the already-being-used
part of those entities may just crash the entire program. So the idea of the open-closed
principle is straightforward: we'd better have entities that never change in any way other
than extending itself.

That means once a test is written and passing, ideally, it should never be changed for newly
added features (and it needs to keep passing, of course). Again, ideally.

Example
Consider an API hub that handles HTTP requests to and responses from the server. We are
going to have several files written as modules, including http-client.ts, hub.ts and
app.ts (but we won't actually write http-client.ts in this example, you will need to
use some imagination).

Save the code below as file hub.ts.

import { HttpClient, HttpResponse } from './http-client';

export function update(): Promise<HttpResponse> {
 let client = new HttpClient();
 return client.get('/api/update');
}

And save the code below as file app.ts.

import Hub from './hub';

Hub
 .update()
 .then(response => JSON.stringify(response.text))
 .then(result => {
 console.log(result);
});

SOLID Principles

[202]

Bravely done! Now we have app.ts badly coupled with http-client.ts. And if we want
to adapt this API hub to something like WebSocket, BANG.

So how can we create entities that are open for extension, but closed for modification? The
key is a stable abstraction that adapts. Consider the storage and client example we took with
Adapter Pattern in Chapter 4, Structural Design Patterns we had a Storage interface that
isolates implementation of database operations from the client. And assuming that the
interface is well-designed to meet upcoming feature requirements, it is possible that it will
never change or just need to be extended during the life cycle of the program.

Abstraction in JavaScript and TypeScript
Guess what, our beloved JavaScript does not have an interface, and it is dynamically typed.
We were not even able to actually write an interface. However, we could still write down
documentation about the abstraction and create new concrete implementations just by
obeying that description.

But TypeScript offers interface, and we can certainly take advantage of it. Consider the
CommandResult class in the previous section. We were writing it as a concrete class, but it
may have subclasses that override the print or render method for customized output.
However, the type system in TypeScript cares only about the shape of a type. That means,
while you are declaring an entity with type CommandResult, the entity does not need to be
an instance of CommandResult: any object with a compatible type (namely has methods
print and render with proper signatures in this case) will do the job.

For example, the following code is valid:

let environment: Environment;

let command: Command = {
 environment,
 print(items) { },
 render(items) { },
 execute() { }
};

SOLID Principles

[203]

Refactor earlier
I double stressed that the open-closed principle can only be perfectly followed under ideal
scenarios. That can be a result of two reasons:

Not all entities in a system can be open to extension and closed to modification at the1.
same time. There will always be changes that need to break the closure of existing
entities to complete their functionalities. When we are designing the interfaces,
we need different strategies for creating stable closures for different foreseeable
situations. But this requires notable experience and no one can do it perfectly.
None of us is too good at designing a program that lasts long and stays healthy forever.2.
Even with thorough consideration, abstractions designed at the beginning can be
choppy facing the changing requirements.

So when we are expecting the entities to be closed for modification, it does not mean that
we should just stand there and watch it being closed. Instead, when things are still under
control, we should refactor and keep the abstraction in the status of being open to extension and
closed to modification at the time point of refactoring.

Liskov substitution principle
The open-closed principle is the essential principle of keeping code maintainable and
reusable. And the key to the open-closed principle is abstraction with polymorphism.
Behaviors like implementing interfaces, or extending classes make polymorphic shapes, but
that might not be enough.

The Liskov substitution principle declares that derived classes must be substitutable for
their base classes. Or in the words of Barbara Liskov, who raised this principle:

What is wanted here is something like the following substitution property: If for each object
o1 of type S there is an object o2 of type T such that for all programs P defined in terms of
T, the behavior of P is unchanged when o1 is substituted for o2 then S is a subtype of T.

Never mind. Let's try another one: any foreseeable usage of the instance of a class should be
working with the instances of its derived classes.

SOLID Principles

[204]

Example
And here we go with a straightforward violation example. Consider Noodles and
InstantNoodles (a subclass of Noodles) to be cooked:

function cookNoodles(noodles: Noodles) {
 if (noodles instanceof InstantNoodles) {
 cookWithBoiledWaterAndBowl(noodles);
 } else {
 cookWithWaterAndBoiler(noodles);
 }
}

Now if we want to have some fried noodles… The cookNoodles function does not seem to
be capable of handling that. Clearly, this violates the Liskov substitution principle, though it
does not mean that it's a bad design.

Let's consider another example written by Uncle Bob in his article talking about this
principle. We are creating class Square which is a subclass of Rectangle, but instead of
adding new features, it adds a constraint to Rectangle: the width and height of a square
should always be equal to each other. Assume we have a Rectangle class that allows its
width and height to be set:

class Rectangle {
 constructor(
 private _width: number;
 private _height: number;
) { }
 set width(value: number) {
 this._width = value;
 }
 set height(value: number) {
 this._height = value;
 }
}

Now we have a problem with its subclass Square, because it gets width and height
setters from Rectangle while it shouldn't. We can certainly override those setters and
make both of them update width and height simultaneously. But in some situations, the
client might just not want that, because doing so will make the program harder to be
predicted.

SOLID Principles

[205]

The Square and Rectangle example violates the Liskov substitution principle. Not
because we didn't find a good way to inherit, but because Square does not conform the
behavior of Rectangle and should not be a subclass of it at the beginning.

The constraints of substitution
Type is an important part in a programming language, even in JavaScript. But having the
same shape, being on the same hierarchy does not mean they can be the substitution of
another without some pain. More than just the shape, the complete behavior is what really
matters for implementations that hold to the Liskov substitution principle.

Interface segregation principle
We've already discussed the important role played by abstractions in object-oriented
design. The abstractions and their derived classes without separation usually come up with
hierarchical tree structures. That means when you choose to create a branch, you create a
parallel abstraction to all of those on another branch.

For a family of classes with only one level of inheritance, this is not a problem: because it is
just what you want to have those classes derived from. But for a hierarchy with greater
depth, it could be.

Example
Consider the TextReader example we took with Template Method Pattern in Chapter 6,
Behavioral Design Patterns: Continuous we had FileAsciiTextReader and
HttpAsciiTextReader derived from AsciiTextReader. But what if we want to have
other readers that understand UTF-8 encoding?

To achieve that goal, we have two common options: separate the interface into two for
different objects that cooperate, or separate the interface into two then get them
implemented by a single class.

SOLID Principles

[206]

For the first case, we can refactor the code with two abstractions, BytesReader and
TextReader:

And for the second case, we can separate method readAllBytes and decodeBytes onto
two interfaces, for example, BytesReader and BytesDecoder. Thus we may implement
them separately and use techniques like mixin to put them together:

An interesting point about this example is that TextReader above itself is an abstract class.
To make this mixin actually work, we need to create a concrete class of TextReader
(without actually implementing readAllBytes and decodeBytes), and then mixin two
concrete classes of BytesReader and BytesDecoder.

SOLID Principles

[207]

Proper granularity
It is said that by creating smaller interfaces, we can avoid a client from using big classes
with features that it never needs. This may cause unnecessary usage of resources, but in
practice, that usually won't be a problem. The most important part of the interface
segregation principle is still about keeping code maintainable and reusable.

Then the question comes out again, how small should an interface be? I don't think I have a
simple answer for that. But I am sure that being too small might not help.

Dependency inversion principle
When we talk about dependencies, the natural sense is about dependencies from bottom to
top, just like how buildings are built. But unlike a building that stands for tens of years with
little change, software keeps changing during its life cycle. Every change costs, more or less.

The dependency inversion principle declares that entities should depend on abstractions,
not on concretions. Higher level code should not depend directly on low-level
implementations, instead, it should depend on abstractions that lead to those
implementations. And this is why things are inverse.

Example
Still taking the HTTP client and API hub as an example, which obviously violates the
dependency inversion principle, taking the foreseeable application into consideration, what
the API hub should depend on is a messaging mechanism bridging client and server, but
not bare HTTP client. This means we should have an abstraction layer of messaging before
the concrete implementation of HTTP client:

SOLID Principles

[208]

Separating layers
Compared to other principles discussed in this chapter, the dependency inversion principle
cares more about the scope of modules or packages. As the abstraction might usually be
more stable than concrete implementations, by following dependency inversion principle,
we can minimize the impact from low-level changes to higher level behaviors.

But for JavaScript (or TypeScript) projects as the language is dynamically typed, this
principle is more about an idea of guidance that leads to a stable abstraction between
different layers of code implementation.

Originally, an important benefit of following this principle is that, if modules or packages
are relatively larger, separating them by abstraction could save a lot of time in compilation.
But for JavaScript, we don't have to worry about that; and for TypeScript, we don't have to
recompile the entire project for making changes to separated modules either.

Summary
In this chapter, we walked through the well-known SOLID principles with simple
examples. Sometimes, following those principles could lead us to a useful design pattern.
And we also found that those principles are strongly bound to each other. Usually violating
one of them may indicate other violations.

Those principles could be extremely helpful for OOD, but could also be overkill if they are
applied without proper adaptions. A well-designed system should have those principles
confirmed just right, or it might harm.

In the next chapter, instead of theories, we'll have more time with a complete workflow
with testing and continuous integration involved.

9
The Road to Enterprise

Application
After walking through common design patterns, we have now the basis of code designing.
However, software engineering is more about writing beautiful code. While we are trying
to keep the code healthy and robust, we still have a lot to do to keep the project and the
team healthy, robust, and ready to scale. In this chapter, we'll talk about popular elements
in the workflow of web applications, and how to design a workflow that fits your team.

The first part would be setting up the build steps of our demo project. We'll quickly walk
through how to build frontend projects with webpack, one of the most popular packaging
tools these days. And we'll configure tests, code linter, and then set up continuous
integration.

There are plenty of nice choices when it comes to workflow integration. Personally, I prefer
Team Foundation Server for private projects or a combination of GitHub and Travis-CI for
open-source projects. While Team Foundation Server (or Visual Studio Team Services as its
cloud-based version) provides a one-stop solution for the entire application life cycle, the
combination of GitHub and Travis-CI is more popular in the JavaScript community. In this
chapter, we are going use the services provided by GitHub and Travis-CI for our workflow.

Here are what we are going to walk through:

Packaging frontend assets with webpack.
Setting up tests and linter.
Getting our hands on a Git flow branching model and other Git-related
workflow.
Connecting a GitHub repository with Travis-CI.
A peek into automated deployment.

The Road to Enterprise Application

[210]

Creating an application
We've talked about creating TypeScript applications for both frontend and backend projects
in the Chapter 1, Tools and Frameworks. And now we are going to create an application that
contains two TypeScript projects at the same time.

Decision between SPA and “normal” web
applications
Applications for different purposes result in different choices. SPA (single page application)
usually delivers a better user experience after being loaded, but it can also lead to trade-offs
on SEO and may rely on more complex MV* frameworks like Angular.

One solution to build SEO-friendly SPA is to build a universal (or isomorphic) application
that runs the same code on both frontend and backend, but that could introduce even more
complexity. Or a reverse proxy could be configured to render automatically generated
pages with the help of tools like Phantom.

In this demo project, we'll choose a more traditional web application with multiple pages to
build. And here's the file structure of the client project:

The Road to Enterprise Application

[211]

Taking team collaboration into consideration
Before we actually start creating a real-world application, we need to come up with a
reasonable application structure. A proper application structure is more than something
under which the code compiles and runs. It should be a result, taking how your team
members work together into consideration.

For example, a naming convention is involved in this demo client structure shown earlier:
page assets are named after page names instead of their types (for example, style.scss)
or names like index.ts. And the consideration behind this convention is making it more
friendly for file navigation by the keyboard.

Of course, this consideration is valid only if a significant number of developers in your team
are cool with keyboard navigation. Other than operation preferences, the experiences and
backgrounds of a team should be seriously considered as well:

Should the “full-stack” mode be enabled for your team?
Should the “full-stack” mode be enabled for every engineer in your team?
How should you divide work between frontend and backend?

Usually, it's not necessary and not efficient to limit the access of a frontend engineer to
client-side development. If it's possible, frontend engineers could take over the controller
layer of the backend and leave hardcore business models and logic to engineers that focus
more on the backend.

We are having the client and server-side projects in the same repository for an easier
integration during development. But it does not mean everything in the frontend or
backend code base should be in this single repository. Instead, multiple modules could be
extracted and maintained by different developers in practice. For example, you can have
database models and business logic models separated from the controllers on the backend.

Building and testing projects
We have already talked about building and testing TypeScript projects at the beginning of
this book. In this section, we will go a little bit further for frontend projects, including the
basis of using Webpack to load static assets as well as code linting.

The Road to Enterprise Application

[212]

Static assets packaging with webpack
Modularizing helps code keep a healthy structure and makes it maintainable. However, it
could lead to performance issues if development-time code written in small modules are
directly deployed without bundling for production usage. So static assets packaging
becomes a serious topic of frontend engineering.

Back to the old days, packaging JavaScript files was just about uglifying source code and
concatenating files together. The project might be modularized as well, but in a global way.
Then we have libraries like Require.js, with modules no longer automatically exposing
themselves to the global scope.

But as I have mentioned, having the client download module files separately is not ideal for
performance; soon we had tools like browserify, and later, webpack – one of the most
popular frontend packaging tools these days.

Introduction to webpack
Webpack is an integrated packaging tool dedicated (at least at the beginning) to frontend
projects. It is designed to package not only JavaScript, but also other static assets in a
frontend project. Webpack provides built-in support for both asynchronous module
definition (AMD) and commonjs, and can load ES6 or other types of resources via plugins.

ES6 module support will get built-in for webpack 2.0, but by the time this
chapter is written, you still need plugins like babel-loader or ts-
loader to make it work. And of course we are going to use ts-loader
later.

To install webpack via npm, execute the following command:

$ npm install webpack -g

Bundling JavaScript
Before we actually use webpack to load TypeScript files, we'll have a quick walk through of
bundling JavaScript.

The Road to Enterprise Application

[213]

First, let's create the file index.js under the directory client/src/ with the following
code inside:

var Foo = require('./foo');

Foo.test();

Then create the file foo.js in the same folder with the following content:

exports.test = function test() {
 console.log('Hello, Webpack!');
};

Now we can have them bundled as a single file using the webpack command-line interface:

$ webpack ./client/src/index.js ./client/out/bundle.js

By viewing the bundle.js file generated by webpack, you will see that the contents of both
index.js and foo.js have been wrapped into that single file, together with the bootstrap
code of webpack. Of course, we would prefer not to type those file paths in the command
line every time, but to use a configuration file instead.

Webpack provides configuration file support in the form of JavaScript files, which makes it
more flexible to generate necessary data like bundle entries automatically. Let's create a
simple configuration file that does what the previous command did.

Create file client/webpack.config.js with the following lines:

'use strict';

const Path = require('path');

module.exports = {
 entry: './src/index',
 output: {
 path: Path.join(__dirname, 'out'),
 filename: 'bundle.js'
 }
};

The Road to Enterprise Application

[214]

These are the two things to mention:

The value of the entry field is not the filename, but the module id (most of the1.
time this is unresolved) instead. This means that you can have the .js extension
omitted, but have to prefix it with ./ or ../ by default when referencing a file.
The output path is required to be absolute. Building an absolute path with2.
__dirname ensures it works properly if we are not executing webpack under the
same directory as the configuration file.

Loading TypeScript
Now we are going to load and transpile our beloved TypeScript using the webpack plugin
ts-loader. Before updating the configuration, let's install the necessary npm packages:

$ npm install typescript ts-loader --save-dev

If things go well, you should have the TypeScript compiler as well as the ts-loader plugin
installed locally. We may also want to rename and update the files index.js and foo.js
to TypeScript files.

Rename index.js to index.ts and update the module importing syntax:

import * as Foo from './foo';

Foo.test();

Rename foo.js to foo.ts and update the module exporting syntax:

export function test() {
 console.log('Hello, Webpack!');
}

Of course, we would want to add the tsconfig.json file for those TypeScript files (in the
folder client):

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs"
 },
 "exclude": [
 "out",
 "node_modules"
]
}

The Road to Enterprise Application

[215]

The compiler option outDir is omitted here because it is managed in the
webpack configuration file.

To make webpack work with TypeScript via ts-loader, we'll need to tell webpack some
information in the configuration file:

Webpack will need to resolve files with .ts extensions. Webpack has a default1.
extensions list to resolve, including '' (empty string), '.webpack.js',
'.web.js', and '.js'. We need to add '.ts' to this list for it to recognize
TypeScript files.
Webpack will need to have ts-loader loading .ts modules because it does not2.
compile TypeScript itself.

And here is the updated webpack.config.js:

'use strict';

const Path = require('path');

module.exports = {
 entry: './src/index',
 output: {
 path: Path.join(__dirname, 'bld'),
 filename: 'bundle.js'
 },
 resolve: {
 extensions: ['', '.webpack.js', '.web.js', '.ts', '.js']
 },
 module: {
 loaders: [
 { test: /\.ts$/, loader: 'ts-loader' }
]
 }
};

Now execute the command webpack under the client folder again, we should get the
compiled and bundled output as expected.

During development, we can enable transpile mode (corresponding to the compiler option
isolatedModules) of TypeScript to have better performance on compiling changing files.
But it means we'll need to rely on an IDE or an editor to provide error hints. And remember
to make another compilation with transpile mode disabled after debugging to ensure things
still work.

The Road to Enterprise Application

[216]

To enable transpile mode, add a ts field (defined by the ts-loader plugin) with
transpileOnly set to true:

module.exports = {
 ...
 ts: {
 transpileOnly: true
 }
};

Splitting code
To take the advantage of code caching across pages, we might want to split the packaged
modules as common pieces. The webpack provides a built-in plugin called
CommonsChunkPlugin that can pick out common modules and have them packed
separately.

For example, if we create another file called bar.ts that imports foo.ts just like
index.ts does, foo.ts can be treated as a common chunk and be packed separately:

module.exports = {
 entry: ['./src/index', './src/bar'],
 ...
 plugins: [
 new Webpack.optimize.CommonsChunkPlugin({
 name: 'common',
 filename: 'common.js'
 })
]
};

For multi-page applications, it is common to have different pages with different entry
scripts. Instead of manually updating the entry field in the configuration file, we can take
advantage of it being JavaScript and generate proper entries automatically. To do so, we
might want the help of the npm package glob for matching page entries:

$ npm install glob --saved-dev

And then update the webpack configuration file:

const glob = require('glob');

module.exports = {
 entry: glob
 .sync('./src/pages/*/*.ts')

The Road to Enterprise Application

[217]

 .filter(path =>
 Path.basename(path, '.ts') ===
 Path.basename(Path.dirname(path))
),
 ...
};

Splitting the code can be rather a complex topic for deep dive, so we'll stop here and let you
explore.

Loading other static assets
As we've mentioned, webpack can also be used to load other static assets like stylesheet and
its extensions. For example, you can use the combination of style-loader, css-loader
and sass-loader/less-loader to load .sass/.less files.

The configuration is similar to ts-loader so we'll not spend extra pages for their
introductions. For more information, refer to the following URLs:

Embedded stylesheets in webpack:
https://webpack.github.io/docs/stylesheets.html

SASS loader for webpack: https://github.com/jtangelder/sass-loader
LESS loader for webpack: https://github.com/webpack/less-loader

Adding TSLint to projects
A consistent code style is an important factor of code quality, and linters are our best
friends when it comes to code styles (and they also helps with common mistakes). For
TypeScript linting, TSLint is currently the simplest choice.

The installation and configuration of TSLint are easy. To begin with, let's install tslint as a
global command:

$ npm install tslint -g

And then we need to initialize a configuration file using the following command under the
project root directory:

$ tslint --init

https://webpack.github.io/docs/stylesheets.html
https://github.com/jtangelder/sass-loader
https://github.com/webpack/less-loader

The Road to Enterprise Application

[218]

TSLint will then generate a default configuration file named tslint.json, and you may
customize it based on your own preferences. And now we can use it to lint our TypeScript
source code:

$ tslint */src/**/*.ts

Integrating webpack and tslint command with
npm scripts
As we've mentioned before, an advantage of using npm scripts is that they can handle local
packages with executables properly by adding node_modules/.bin to PATH. And to make
our application easier to build and test for other developers, we can have webpack and
tslint installed as development dependencies and add related scripts to package.json:

"scripts": {
 "build-client": "cd client && webpack",
 "build-server": "tsc --project server",
 "build": "npm run build-client && npm run build-server",
 "lint": "tslint ./*/src/**/*.ts",
 "test-client": "cd client && mocha",
 "test-server": "cd server && mocha",
 "test": "npm run lint && npm run test-client && npm run test-server"
}

Version control
Thinking back to my senior high school days, I knew nothing about version control tools.
The best thing I could do was to create a daily archive of my code on a USB disk. And yes I
did lose one!

Nowadays, with the boom of version control tools like Git and the availabilities of multiple
free services like GitHub and Visual Studio Team Services, managing code with version
control tools has become a daily basis for every developer.

As the most popular version control tool, Git has already been playing an important role in
your work or personal projects. In this section, we'll talk about popular practices of using
Git in a team.

The Road to Enterprise Application

[219]

Note that I am assuming that you already have the basic knowledge of Git,
and know how to make operations like init, commit, push, pull and
merge. If not, please get hands on and try to understand those operations
before continue.

Check out this quick tutorial at: h t t p s : / / t r y . g i t h u b . i o /.

Git flow
Version control plays an important a role and it does not only influence the source code
management process but also shapes the entire workflow of product development and
delivery. Thus a successful branching model becomes a serious choice.

Git flow is a collection of Git extensions that provides high-level repository operations for a
branching model raised by Vincent Driessen. The name Git flow usually refers to the
branching model as well.

In this branching model, there are two main branches: master and develop, as well as
three different types of supporting branches: feature, hotfix , and release.

With the help of Git flow extensions, we can easily apply this branching model without
having to remember and type detailed sequences of commands. To install, please check out
the installation guide of Git flow at: h t t p s : / / g i t h u b . c o m / n v i e / g i t f l o w / w i k i / I n s t a l l a t

i o n.

Before we can use Git flow to create and merge branches, we'll need to make an
initialization:

$ git flow init -d

Here -d stands for using default branch naming conventions. If you
would like to customize, you may omit the -d option and answer the
questions about git flow init command.

This will create master and develop branches (if not present) and save Git flow-related
configuration to the local repository.

https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation

The Road to Enterprise Application

[220]

Main branches
The branching model defines two main branches: master and develop. Those two
branches exist in the lifetime of the current repository:

The graph in the preceding shows a simplified relationship between
develop and master branches.

Branch master: The HEAD of master branch should always contain production-
ready source code. It means that no daily development is done on master branch
in this branching model, and only commits that are fully tested and can be
performed with a fast-forward should be merged into this branch.
Branch develop: The HEAD of develop branch should contain delivered
development source code. Changes to develop branch will finally be merged
into master, but usually not directly. We'll come to that later when we talk about
release branches.

Supporting branches
There are three types of supporting branches in the branching model of Git flow: feature,
hotfix, and release. What they roughly do has already been suggested by their names,
and we'll have more details to follow.

Feature branches
A feature branch has only direct interactions with the develop branch, which means it
checks out from a develop branch and merges back to a develop branch. The feature
branches might be the simplest type of branches out of the three.

The Road to Enterprise Application

[221]

To create a feature branch with Git flow, simply execute the following command:

$ git flow feature start <feature-name>

Now Git flow will automatically checkout a new branch named after feature/<feature-
name>, and you are ready to start development and commit changes occasionally.

After completing feature development, Git flow can automatically merge things back to the
develop branch by the following command:

$ git flow feature finish <feature-name>

A feature branch is usually started by the developer who is assigned to the development of
that very feature and is merged by the developer him or herself, or the owners of the
develop branch (for example, if code review is required).

Release branches
In a single iteration of a product, after finishing the development of features, we usually
need a stage for fully testing everything, fixing bugs, and actually getting it ready to be
released. And work for this stage will be done on release branches.

Unlike feature branches, a repository usually has only one active release branch at a time,
and it is usually created by the owner of the repository. When the development branch is
reaching a state of release and a thorough test is about to begin, we can then create a release
branch using the following command:

$ git flow release start <version>

From now on, bug fixes that are going to be released in this iteration should be merged or
committed to branch release/<version> and changes to the current release branch can
be merged back to the develop branch anytime.

If the test goes well and important bugs have been fixed, we can then finish this release and
put it online:

$ git flow release finish <version>

The Road to Enterprise Application

[222]

After executing this command, Git flow will merge the current release branch to both
master and develop branches. So in a standard Git flow branching model, the develop
branch will not be merged into the master directly, though after finishing a release, the
content on develop and master branches could be identical (if no more changes are made
to the develop branch during the releasing stage).

Finishing the current release usually means the end of the iteration, and
the decision should be made with serious consideration.

Hotfix branches
Unfortunately, there's a phenomenon in the world of developers: bugs are always harder to
find before the code goes live. After releasing, if serious bugs were found, we would have to
use hotfixes to make things right.

A hotfix branch works kind of like a release branch but lasts shorter (because you would
probably want it merged as soon as possible). Unlike feature branches being checked out
from develop branch, a hotfix branch is checked out from master. And after getting
things done, it should be merged back to both master and develop branches, just like a
release branch does.

To create a hotfix branch, similarly you can execute the following command:

$ git flow hotfix start <hotfix-name>

And to finish, execute the following command:

$ git flow hotfix finish <hotfix-name>

Summary of Git flow
The most valuable idea in Git flow beside the branching model itself is, in my opinion, the
clear outline of one iteration. You may not need to follow every step mentioned thus far to
use Git flow, but just make it fit your work. For example, for small features that can be done
in a single commit, you might not actually need a feature branch. But conversely, Git flow
might not bring much value if the iteration itself gets chaotic.

The Road to Enterprise Application

[223]

Pull request based code review
Code review could be a very important joint of team cooperation. It ensures acceptable
quality of the code itself and helps newcomers correct their misunderstanding of the project
and accumulate experiences rapidly without taking a wrong path.

If you have tried to contribute code to open-source projects on GitHub, you must be
familiar with pull requests or PR. There are actually tools or IDEs with code reviewing
workflow built-in. But with GitHub and other self-hosted services like GitLab, we can get it
done smoothly without relying on specific tools.

Configuring branch permissions
Restrictions on accessing specific branches like master and develop are not technically
necessary. But without those restrictions, developers can easily skip code reviewing because
they are just able to do so. In services provided by the Visual Studio Team Foundation
Server, we may add a custom check in policy to force code review. But in lighter services
like GitHub and GitLab, it might be harder to have similar functionality.

The easiest way might be to have developers who are more qualified and familiar with the
current project have the permissions for writing the develop branch, and restrict code
reviewing in this group verbally. For other developers working on this project, pull requests
are now forced for getting changes they merged.

GitHub requires an organization account to specify push permissions for
branches. Besides this, GitHub provides a status API and can add
restrictions to merging so that only branches with a valid status can get
merged.

Comments and modifications before merge
A great thing about those popular Git services is that the reviewer and maybe other
colleagues of yours may comment on your pull requests or even specific lines of code to
raise their concerns or suggestions. And accordingly, you can make modifications to the
active pull request and make things a little bit closer to perfect.

Furthermore, references between issues and pull requests are shown in the conversation.
This along with the comments and modification records makes the context of current pull
requests clear and traceable.

The Road to Enterprise Application

[224]

Testing before commits
Ideally, we would expect every commit we make to pass tests and code linting. But because
we are human, we can easily forget about running tests before committing changes. And
then, if we have already set up continuous integration (we'll come to that shortly) of this
project, pushing the changes would make it red. And if your colleague has set up a CI light
with an alarm, you would make it flash and sound out.

To avoid breaking the build constantly, you might want to add a pre-commit hook to your
local repository.

Git hooks
Git provides varieties of hooks corresponding to specific phases of an operation or an event.
After initializing a Git repository, Git will create hook samples under the directory
.git/hooks.

Now let's create the file pre-commit under the directory .git/hooks with the following
content:

#!/bin/sh
npm run test

The hook file does not have to be a bash file, and it can just be any
executable. For example, if you want like to work with a Node.js hook,
you can update the shebang as #!/usr/bin/env node and then write the
hook in JavaScript.

And now Git will run tests before every commit of changes.

Adding pre-commit hook automatically
Adding hooks manually to the local repository could be trivial, but luckily we have npm
packages like pre-commit that will add pre-commit hooks automatically when it's installed
(as you usually might need to run npm install anyway).

To use the pre-commit package, just install it as a development dependency:

$ npm install pre-commit --save-dev

The Road to Enterprise Application

[225]

It will read your package.json and execute npm scripts listed with the field pre-commit
or precommit:

{
 ..
 "script": {
 "test": "istanbul cover ..."
 },
 "pre-commit": ["test"]
}

At the time of writing, npm package pre-commit uses symbolic links to
create Git hook, which requires administrator privileges on Windows. But
failing to create a symbolic link won't stop the npm install command
from completing. So if you are using Windows, you probably might want
to ensure pre-commit is properly installed.

Continuous integration
The continuous integration (CI) refers to a practice of integrating multiple parts of a project
or solution together regularly. Depending on the size of the project, the integration could be
taken for every single change or on a timed schedule.

The main goal of continuous integration is to avoid integration issues, and it also enforces
the discipline of frequent automated testing, this helps to find bugs earlier and prevents the
degeneration of functionalities.

There are many solutions or services with continuous integration support. For example,
self-hosted services like TFS and Jenkins, or cloud-based services like Visual Studio Team
Services, Travis-CI, and AppVeyor. We are going to walk through the basic configuration of
Travis-CI with our demo project.

Connecting GitHub repository with Travis-CI
We are going to use GitHub as the Git service behind continuous integration. First of all,
let's get our GitHub repository and Travis-CI settings ready:

Create a correspondent repository as origin and push the local repository to1.
GitHub:

 $ git remote add origin https://github.com/<username>/<repo>.git

The Road to Enterprise Application

[226]

 $ git push -u origin master

Sign into Travis-CI with your GitHub account at: h t t p s : / / t r a v i s - c i . o r g / a u t h.2.
Go to the account page, find the project we are working with, and then flick the3.
repository switch on.

Now the only thing we need to make the continuous integration setup work is a proper
Travis-CI configuration file. Travis-CI has built-in support for many languages and
runtimes. It provides multiple versions of Node.js and makes it extremely easy to test
Node.js projects.

Create the file .travis.yml in the root of project with the following content:

language: node_js
node_js:
 - "4"
 - "6"
before_script:
 - npm run build

This configuration file tells Travis-CI to test with both Node.js v4 and v6, and execute the
command npm run build before testing (it will run the npm test command
automatically).

Almost ready! Now add and commit the new .travis.yml file and push it to origin. If
everything goes well, we should see Travis-CI start the build of this project shortly.

You might be seeing building status badges everywhere nowadays, and
it's easy to add one to the README.md of your own project. In the project
page on Travis-CI, you should see a badge next to the project name. Copy
its URL and add it to the README.md as an image:

![building status](https://api.travis-ci.org/<username>/<repo>.svg)

Deployment automation
Rather than a version control tool, Git is also popular for relatively simple deployment
automation. And in this section, we'll get our hands on and configure automated
deployment based on Git.

https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth

The Road to Enterprise Application

[227]

Passive deployment based on Git server side
hooks
The idea of passive deployment is simple: when a client pushes commits to the bare
repository on the server, a post-receive hook of Git will be triggered. And thus we can
add scripts checking out changes and start deployment.

The elements involved in the Git deployment solution on both the client and server sides
includes:

To make this mechanism work, we need to perform the following steps:

Create a bare repository on the server with the following command:1.

 $ mkdir deployment.git
 $ cd deployment.git
 $ git init --bare

A bare repository usually has the extension .git and can be treated as a
centralized place for sharing purposes. Unlike normal repositories, a bare
repository does not have the working copy of source files, and its structure
is quite similar to what's inside a .git directory of a normal repository.

Add deployment.git as a remote repository of our project, and try to push the2.
master branch to the deployment.git repository:

 $ cd ../demo-project
 $ git remote add deployment ../deployment.git
 $ git push -u deployment master

The Road to Enterprise Application

[228]

We are adding a local bare repository as the remote repository in this
example. Extra steps might be required to create real remote repositories.

Add a post-receive hook for the deployment.git repository. We've already3.
worked with the client side Git hook pre-commit, and the server side hooks
work the same way.

But when it comes to a serious production deployment, how to write the hook could be a
hard question to answer. For example, how do we minimize the impact of deploying new
builds?

If we have set up our application with high availability load balancing, it might not be a big
issue to have one of them offline for minutes. But certainly not all of them in this case. So
here are some basic requirements of the deploy scripts on both the client and server sides:

The deployment should be proceeded in a certain sequence
The deployment should stop running services gently

And we can do better by:

Building outside of the previous deployment directory
Only trying to stop running services after the newly deployed application is
ready to start immediately

Proactive deployment based on timers or
notifications
Instead of using Git hooks, we can have other tools pull and build the application
automatically as well. In this way, we no longer need the client to push changes to servers
separately. And instead, the program on the server will pull changes from a remote
repository and complete deployment.

A notification mechanism is preferred to avoid frequent fetching though, and there are
already tools like PM2 that have automated deployment built-in. You can also consider
building up your own using hooks provided by cloud-based or self-hosted Git services.

The Road to Enterprise Application

[229]

Summary
In this final chapter, we built the outline of a complete workflow starting with building and
testing to continuous integration and automated deployment. We've covered some popular
services or tools and provide other options for readers to discover and explore.

Among the varieties of choice, you might agree that the most appropriate workflow for
your team is the workflow that fits the best. Taking people rather than technologies alone
into consideration is an important part of software engineering, and it is also the key to
keeping the team efficient (and happy, perhaps).

The sad thing about a team, or a crowd of people is that usually only a few of them can
keep the passion burning. We’ve talked about finding the balance point, but that is what we
still need to practice. And in most of the cases, expecting every one of your team to find the
right point is just unreasonable. When it comes to team projects, we'd better have rules that
can be validated automatically instead of conventions that are not testable.

After reading this book, I hope the reader gets the outlines of the build steps, workflow, and
of course knowledge of common design patterns. But rather than the cold explanations of
different terms and patterns, there are more important ideas I wanted to deliver:

We as humans are dull, and should always keep our work divided as controllable
pieces, instead of acting like a genius. And that's also why we need to design
software to make our lives easier.
And we are also unreliable, especially at a scale of some mass (like a team).
As a learner, always try to understand the reason behind a conclusion or
mechanism behind a phenomenon.

Index

A
Abstract Factory Pattern
 about 73
 consequences 79
 implementation 75
 participants 74
 scope 75
abstract syntax tree (AST) 170
abstraction of permission
 about 186
 group 187
 permission 187
 permission descriptor 187
 privilege 187
abstraction
 about 62
 finding 62
 strategies, implementing 63
 wrapping stores 64
Adapter Pattern
 about 101, 102
 consequences 106
 implementation 105
 implementations 103, 104
 participants 103
 scope 103
AMD 189
application
 creating 210
 creating, with team collaboration 211
 SEO-friendly SPA, building 210
async function
 reference link 160
asynchronous module definition (AMD) 212
asynchronous pattern
 about 191

 asynchronous creational pattern 193
 event-based streams parser 195, 196
 middleware and hooks 194
 predictable code, writing 191
Atom 15
await function
 reference link 160

B
basic implementation
 about 34
 code base, creating 34
 initial structure of data synchronization, defining

35

 issues 37
 timestamp comparison, for obtaining data 35
 two-way synchronization 36, 37
behavioral design patterns
 about 124
 Chain of Responsibility Pattern 124
 Command Patter 124
 Mediator Pattern 124
 Memento Pattern 124
 Observer Pattern 149
 State Pattern 149
 Strategy Pattern 149
 Template Pattern 149
 Visitor Pattern 149
Bridge Pattern
 about 106
 consequences 109
 implementation 107, 108, 109
 participants 107
 scope 107
Builder Pattern
 about 79, 80
 consequences 86

[231]

 implementation 81, 82
 participants 80
 scope 81

C
Chai 24, 25
Chain of Responsibility Pattern
 about 124, 125, 127
 consequences 130
 implementation 128
 participants 127
 scope 128
code linting 211
code review 223
Command Pattern
 about 130, 131
 consequences 134
 implementation 133, 134
 participants 132
 scope 132
commits
 pre-commit hook, adding automatically 224
 testing 224
 testing, with Git hooks 224
commonjs 189
compiler options, TypeScript
 about 18
 declaration 18
 emitDecoratorMetadata* 20
 experimentalDecorators* 19
 isolatedModules 21
 jsx 19
 module 18
 noEmitHelpers 19
 noEmitOnError 19
 noImplicitAny 19
 outDir 20
 outFile 20
 preserveConstEnums 21
 reference link 21
 rootDir 20
 sourceMap 19
 strictNullChecks 21
 stripinternal* 21
 target 18

Composite Pattern
 about 91
 consequences 94
 implementation 92
 participants 92
 scope 92
conflict merging
 client side, updating 58, 59
 data structures 57
 server side, updating 60
 supporting 57
continuous integration (CI)
 about 225
 GitHub repository, connecting with Travis-CI 225
creational design patterns 68
 about 66
 Abstract Factory Pattern 67
 builder 67
 Factory Method Pattern 67
 Singleton Pattern 68

D
Decorator Pattern
 about 95, 96
 consequences 101
 decorators, with ES-next syntax 100
 implementations 97
 implementations, classical decorators 97, 98
 participants 96
 reference link 96
 scope 97
dependency inversion principle
 example 207
 layers, separating 208
deployment automation
 about 226
 passive deployment, based on Git server side

hooks 227
 proactive deployment, based on timers 228
director 80

E
error transformation
 filter by error class 189
 filter by scope 189

[232]

 filter by string or regular expression 189
expected errors
 about 188
 defining 188
 throwing 188
 transforming 188
Express
 controllers 181
 views 181

F
factory method 68, 69
Factory Method Pattern
 about 68
 consequences 72
 implementation 69
 participants 69
 scope 69
Façade Pattern
 about 110, 111
 consequences 114
 implementation 112, 113, 114
 participants 111
 scope 112
features
 about 39
 conflict merging support 57
 implementation, issues 60, 61
 multiple clients, supporting with incremental data

50

 multiple items, synchronizing 39
 multiple types of data, synchronizing 49, 50
Flyweight Pattern
 about 114, 115
 consequences 118
 implementation 116, 118
 participants 115
 scope 116

G
Git flow
 about 219
 branches 220
 reference link 219
 summarizing 222

 supporting branches 220
Git
 reference link 219

H
handy editor
 selecting 9
 Sublime Text 13
 Visual Studio Code 9

I
IDE options
 about 14
 Atom 15
 Visual Studio 15
 WebStorm 16
in-memory storage 34
IndexdDBStorage
 reference link 104
interface segregation principle
 about 205
 example 205, 206
 proper granularity 207
issues, basic implementation
 data server, passing from server to client 38
 data store, passing from server to client 37
 relationship clarity 38
Istanbul
 used, for obtaining coverage information 27, 28
 used, for testing 24
Iterator Pattern
 about 138, 139
 array iterator, implementing 140
 consequences 143
 end method 138
 ES6 iterator, implementing 141, 142
 first() method 138
 implementation 140
 index method 138
 item method 138
 next() method 138
 participants 139
 reference link 143
 scope 139

[233]

K
Karma
 browser project, creating 28
 configuring 30
 installing 30
 used, for testing real browsers 28
 using 30

L
Liskov substitution principle
 about 203
 example 204, 205
 substitution constraints 205

M
Mediator Pattern
 about 143, 144
 consequences 147
 implementing 145, 146
 participants 144
 scope 145
Memento Pattern
 about 135
 consequences 138
 implementation 136
 participants 136
 scope 136
Mocha
 about 24
 tests, writing in JavaScript 25
 tests, writing in TypeScript 25, 26, 27
 used, for testing 24
multiple clients, supporting with incremental data
 about 50
 client side, updating 51, 53
 server side, updating 55
multiple item synchronization
 about 39
 data type, replacing with array 39
 server-centered synchronization 39, 40

N
Node.js documentation
 reference link 93

Node.js installation
 path 8
 version 8
npm
 used, for integrating commands 31

O
Object-Oriented Design (OOD) 198
Observer Pattern
 about 162, 164, 165
 consequences 169, 170
 implementation 167
 participants 166
 scope 167
open-closed principle 201

P
Package Control
 reference link 14
pen-closed principle
 abstraction, in JavaScript 202
 abstraction, in TypeScript 202
 example 201, 202
 refactor 203
prerequisites installation 7
 Node.js 8
 TypeScript compiler 8, 9
projects
 modularizing 189
 TSLint, adding 217, 218
Promise constructor
 reference link 162
promise-based web architecture
 about 179, 180
 abstraction of permission 186
 abstraction of responses 184, 185
 controllers, in Express 181
 existing modules and libraries, promisifying 180
 expected errors 187
 views, in Express 181
Promise
 reference link 102
property descriptors
 reference link 101
prototype 86, 87

[234]

Proxy Pattern
 about 118
 consequences 123
 implementation 120, 122
 participants 119
 protection proxy 119
 remote proxy 118
 scope 120
 smart proxy 119
 virtual proxy 119
proxy
 reference link 119
pull request based code review
 about 223
 branch permission, configuring 223
 comments, making 223

S
server-centered synchronization
 about 39, 40
 client side, updating 43, 44
 from client, to server 44
 from server, to client 40
 interfaces, updating 41
 server side, updating 42, 46
single responsibility principle
 about 199
 axis, selecting 200
 example 199
Singleton Pattern
 about 87
 conditional singletons 89
 implementation 87, 88
SOLID principles
 dependency inversion principle 198, 207
 interface segregation principle 198
 Liskov substitution principle 198
 open-closed principle 198
 single responsibility principle 198
State Pattern
 about 154, 155
 consequences 158
 implementation 156, 158
 participants 155
 scope 156

Strategy Pattern
 about 150, 151
 consequences 154
 implementation 152
 participants 151, 152
 scope 152
structural design patterns
 about 90
 adapter 90
 bridge 90
 composite 90
 decorator 90
 facade 90
 flyweight 90
Sublime Text
 Package Control, installing 14
 reference link 13
 using, with TypeScript plugin 13, 14
supporting branches, Gitflow
 feature branches 220
 hotfix branches 222
 release branches 221, 222

T
Template Method Pattern
 about 158, 159
 consequences 162
 implementation 160, 161
 participants 159
 scope 160
type aliases
 reference link 71
TypeScript plugin
 installing 14
 using, with Sublime Text 13
TypeScript project configuration
 about 16
 compiler options 18
 source map support, adding 21
 tsconfig.json 17
TypeScript projects
 building 211
 creating 211
TypeScript
 reference link 50

typings
 declaration files, downloading 23
 installing 22
 Option--save option 24
 used, for downloading declarations 22

V
version control tools
 about 218
 Git flow 219
 testing, before commits 224
Virtual DOM 170
Visitor Pattern
 about 170
 consequences 176
 implementation 173, 176
 participants 172
 scope 173
Visual Studio Code
 configuring 10, 11
 download link 9
 features 11
 folder, opening as workspace 11
 minimum build task, configuring 12

 reference link 12

W
webpack
 about 209, 212
 and tslint commands integration, with NPM

scripts 218
 embedded stylesheets, reference link 217
 installing 212
 LESS loader, reference link 217
 other static assets, loading 217
 SASS loader, reference link 217
 used, for building JavaScript 212, 213
 used, for loading TypeScript 214, 216
 used, for splitting code 216
 used, for static assets packaging 212
workflow
 about 16
 commands, integrating with npm 31
 declarations, downloading with typings 22
 fancy build tools 31
 Istanbul, used for testing 24
 Mocha, used for testing 24
 testing, in real browsers with Karma 28
 TypeScript project, configuring 16

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Tools and Frameworks
	Installing the prerequisites
	Installing Node.js
	Installing TypeScript compiler

	Choosing a handy editor
	Visual Studio Code
	Configuring Visual Studio Code
	Opening a folder as a workspace
	Configuring a minimum build task

	Sublime Text with TypeScript plugin
	Installing Package Control
	Installing the TypeScript plugin

	Other editor or IDE options
	Atom with the TypeScript plugin
	Visual Studio
	WebStorm

	Getting your hands on the workflow
	Configuring a TypeScript project
	Introduction to tsconfig.json
	Compiler options
	target
	module
	declaration
	sourceMap
	jsx
	noEmitOnError
	noEmitHelpers
	noImplicitAny
	experimentalDecorators*
	emitDecoratorMetadata*
	outDir
	outFile
	rootDir
	preserveConstEnums
	strictNullChecks
	stripInternal*
	isolatedModules

	Adding source map support

	Downloading declarations using typings
	Installing typings
	Downloading declaration files
	Option “save”

	Testing with Mocha and Istanbul
	Mocha and Chai
	Writing tests in JavaScript
	Writing tests in TypeScript

	Getting coverage information with Istanbul

	Testing in real browsers with Karma
	Creating a browser project
	Installing Karma
	Configuring and starting Karma

	Integrating commands with npm
	Why not other fancy build tools?

	Summary

	Chapter 2: The Challenge of Increasing Complexity
	Implementing the basics
	Creating the code base
	Defining the initial structure of the data to be synchronized
	Getting data by comparing timestamps
	Two-way synchronizing
	Things that went wrong while implementing the basics
	Passing a data store from the server to the client does not make sense
	Making the relationships clear

	Growing features
	Synchronizing multiple items
	Simply replacing data type with an array
	Server-centered synchronization
	Synchronizing from the server to the client
	Synchronizing from client to server

	Synchronizing multiple types of data
	Supporting multiple clients with incremental data
	Updating the client side
	Updating server side

	Supporting more conflict merging
	New data structures
	Updating client side
	Updating the server side

	Things that go wrong while implementing everything
	Piling up similar yet parallel processes
	Data stores that are tremendously simplified

	Getting things right
	Finding abstraction
	Implementing strategies
	Wrapping stores

	Summary

	Chapter 3: Creational Design Patterns
	Factory method
	Participants
	Pattern scope
	Implementation
	Consequences

	Abstract Factory
	Participants
	Pattern scope
	Implementation
	Consequences

	Builder
	Participants
	Pattern scope
	Implementation
	Consequences

	Prototype
	Singleton
	Basic implementations
	Conditional singletons

	Summary

	Chapter 4: Structural Design Patterns
	Composite Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Decorator Pattern
	Participants
	Pattern scope
	Implementation
	Classical decorators
	Decorators with ES-next syntax

	Consequences

	Adapter Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Bridge Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Façade Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Flyweight Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Proxy Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 5: Behavioral Design Patterns
	Chain of Responsibility Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Command Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Memento Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Iterator Pattern
	Participants
	Pattern scope
	Implementation
	Simple array iterator
	ES6 iterator

	Consequences

	Mediator Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 6: Behavioral Design Patterns: Continuous
	Strategy Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	State Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Template Method Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Observer Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Visitor Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 7: Patterns and Architectures in JavaScript and TypeScript
	Promise-based web architecture
	Promisifying existing modules or libraries
	Views and controllers in Express
	Abstraction of responses
	Abstraction of permissions
	Expected errors
	Defining and throwing expected errors
	Transforming errors

	Modularizing project
	Asynchronous patterns
	Writing predictable code
	Asynchronous creational patterns
	Asynchronous middleware and hooks
	Event-based stream parser

	Summary

	Chapter 8: SOLID Principles
	Single responsibility principle
	Example
	Choosing an axis

	Open-closed principle
	Example
	Abstraction in JavaScript and TypeScript
	Refactor earlier

	Liskov substitution principle
	Example
	The constraints of substitution

	Interface segregation principle
	Example
	Proper granularity

	Dependency inversion principle
	Example
	Separating layers

	Summary

	Chapter 9: The Road to Enterprise Application
	Creating an application
	Decision between SPA and “normal” web applications
	Taking team collaboration into consideration

	Building and testing projects
	Static assets packaging with webpack
	Introduction to webpack
	Bundling JavaScript
	Loading TypeScript
	Splitting code
	Loading other static assets

	Adding TSLint to projects
	Integrating webpack and tslint command with npm scripts

	Version control
	Git flow
	Main branches
	Supporting branches
	Feature branches
	Release branches
	Hotfix branches

	Summary of Git flow

	Pull request based code review
	Configuring branch permissions
	Comments and modifications before merge

	Testing before commits
	Git hooks
	Adding pre-commit hook automatically

	Continuous integration
	Connecting GitHub repository with Travis-CI

	Deployment automation
	Passive deployment based on Git server side hooks
	Proactive deployment based on timers or notifications

	Summary

	Index

