
M A N N I N G

Nader Dabit

Developing iOS and Android apps with JavaScript

React Native in Action

MANN I NG
Shelter Island

React Native in Action
Developing iOS and Android apps with JavaScript

NADER DABIT

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

	 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

ISBN: 9781617294051
Printed in the United States of America
1  2  3  4  5  6  7  8  9  10 – SP – 24  23  22  21  20  19

	 Development editor:	 Marina Michaels
	 Project editor:	 Tiffany Taylor
	 Copy editor:	 Tiffany Taylor
	 Proofreader:	 Melody Dolab
	 Typesetter:	 Happenstance Type-O-Rama
	 Cover designer:	 Marija Tudor

iii

brief contents

Part 1	 Getting started with React Native.......................... 1
1	 ■	 Getting started with React Native  3
2	 ■	 Understanding React  27
3	 ■	 Building your first React Native app  45

Part 2	 Developing applications in React Native...............73
4	 ■	 Introduction to styling  75
5	 ■	 Styling in depth  115
6	 ■	 Navigation  145
7	 ■	 Animations   162
8	 ■	 Using the Redux data architecture library  179

Part 3	 API reference..197
9	 ■	 Implementing cross‑platform APIs  199

10	 ■	 Implementing iOS-specific components and APIs  222
11	 ■	 Implementing Android-specific components and APIs  242

Part 4	 Bringing it all together...261
12	 ■	 Building a Star Wars app using cross-platform components  263

v

contents
preface  xi
acknowledgments  xiii
about this book  xv
about the author  xviii
about the cover illustration  xix

Part 1	 Getting started with React Native...........1

	 1	Getting started with React Native  3
	1.1	 Introducing React and React Native  4

A basic React class  5  ■  React lifecycle  6

	1.2	 What you’ll learn  7

	1.3	 What you should know  7

	1.4	 Understanding how React Native works  8
JSX  8  ■  Threading  8  ■  React  8  ■  Unidirectional data
flow  8  ■  Diffing  8  ■  Thinking in components  9

	1.5	 Acknowledging React Native’s strengths  10
Developer availability  11  ■  Developer productivity  11
Performance  12  ■  One-way data flow  12  ■  Developer
experience  13  ■  Transpilation  13  ■  Productivity and
efficiency  13  ■  Community  14  ■  Open source  14  ■  Immediate
updates  14  ■  Other solutions for building cross-platform mobile
applications  14

vivi contents

	1.6	 React Native’s drawbacks  15

	1.7	 Creating and using basic components  15
An overview of components  16  ■  Native components  16
Component composition  17  ■  Exportable components  19
Combining components  21

	1.8	 Creating a starter project  22
Create React Native App CLI  22  ■  React Native CLI  23

	 2	Understanding React  27
	2.1	 Managing component data using state  28

Correctly manipulating component state  28

	2.2	 Managing component data using props  32

	2.3	 React component specifications  39
Using the render method to create a UI  39  ■  Using property
initializers and constructors  40

	2.4	 React lifecycle methods  41
The static getDerivedStateFromProps method  42
The componentDidMount lifecycle method  42
The shouldComponentUpdate lifecycle method  43
The componentDidUpdate lifecycle method  43
The componentWillUnmount lifecycle method  44

	 3	 Building your first React Native app  45
	3.1	 Laying out the todo app  46

	3.2	 Coding the todo app  47

	3.3	 Opening the developer menu  52
Opening the developer menu in the iOS simulator  52  ■  Opening
the developer menu in the Android emulator  53  ■  Using the
developer menu  53

	3.4	 Continuing building the todo app  55

Part 2	� Developing applications in
React Native... 73

	 4	 Introduction to styling  75
	4.1	 Applying and organizing styles in React Native  76

Applying styles in applications  76  ■  Organizing
styles  78  ■  Styles are code  80

	 vii	 viicontents

	4.2	 Styling view components  83
Setting the background color  84  ■  Setting border
properties  86  ■  Specifying margins and padding  92  ■  Using
position to place components  97  ■  Profile Card positioning  99

	4.3	 Styling Text components  100
Text components vs. View components  100  ■  Font
styles  104  ■  Using decorative text styles  107

	 5	 Styling in depth  115
	5.1	 Platform-specific sizes and styles  116

Pixels, points, and DPs  116  ■  Creating drop shadows with
ShadowPropTypesIOS and Elevation  118  ■  Putting it into
practice: drop shadows in the ProfileCard  121

	5.2	 Using transformations to move, rotate, scale, and skew
components  122
3D effects with perspective  123  ■  Moving elements along the x- and
y-axes with translateX and translateY  123  ■  Rotating elements
with rotateX, rotateY, and rotateZ (rotate)  124  ■  Setting visibility
when rotating an element more than 90°  127  ■  Scaling objects
on the screen with scale, scaleX, and scaleY  128  ■  Using the scale
transform to create a thumbnail of the ProfileCard  129  ■  Skewing
elements along the x- and y-axes with skewX and skewY  132
Transformation key points  134

	5.3	 Using flexbox to lay out components  135
Altering a component’s dimensions with flex  135  ■  Specifying the
direction of the flex with flexDirection  136  ■  Defining how space
is used around a component with justifyContent  137  ■  Aligning
children in a container with alignItems  139  ■  Overriding the
parent container’s alignment with alignSelf  140  ■  Preventing
clipped items with flexWrap  142

	 6	Navigation  145
	6.1	 React Native navigation vs. web navigation  146

	6.2	 Building a navigation-based app  146

	6.3	 Persisting data  159

	6.4	 Using DrawerNavigator to create drawer-based
navigation  160

	 7	 Animations   162
	7.1	 Introducing the Animated API  163

viiiviii contents

	7.2	 Animating a form input to expand on focus  165

	7.3	 Creating a custom loading animation using
interpolation  167

	7.4	 Creating multiple parallel animations  170

	7.5	 Creating an animated sequence  172

	7.6	 Using Animated.stagger to stagger animation start
times  175

	7.7	 Other useful tips for using the Animated library  177
Resetting an animated value  177  ■  Invoking a
callback  177  ■  Offloading animations to the native
thread  177  ■  Creating a custom animatable component using
createAnimatedComponent  178

	 8	Using the Redux data architecture library  179
	8.1	 What is Redux?  179

	8.2	 Using context to create and manage global state in a React
application  180

	8.3	 Implementing Redux with a React Native app  181

	8.4	 Creating Redux reducers to hold Redux state  183

	8.5	 Adding the provider and creating the store  184

	8.6	 Accessing data using the connect function  185

	8.7	 Adding actions  187

	8.8	 Deleting items from a Redux store in a reducer  192

Part 3	 API reference... 197

	 9	 Implementing cross‑platform APIs  199
	9.1	 Using the Alert API to create cross-platform

notifications  200
Use cases for alerts  200  ■  Example of using alerts  201

	9.2	 Using the AppState API to detect the current application
state  202
Use cases for AppState  203  ■  Example of using AppState  203

	9.3	 Using the AsyncStorage API to persist data  204
Use cases for AsyncStorage  204  ■  Example of using
AsyncStorage  205

	 ix	 ixcontents

	9.4	 Using the Clipboard API to copy text into the
user’s clipboard  207
Use cases for Clipboard  207  ■  Example of using Clipboard  207

	9.5	 Using the Dimensions API to get the user’s
screen information  208
Use cases for the Dimensions API  209  ■  Example of using the
Dimensions API  209

	9.6	 Using the Geolocation API to get the user’s current
location information  209
Use cases for the Geolocation API  210  ■  Example of using
Geolocation  210

	9.7	 Using the Keyboard API to control the location and
functionality of the native keyboard  212
Use cases for the Keyboard API  212  ■  Example of using the
Keyboard API  213

	9.8	 Using NetInfo to get the user’s current online/offline
status  214
Use cases for NetInfo  215  ■  Example of using NetInfo  216

	9.9	 Getting information about touch and gesture events with
PanResponder  216
Use cases for the PanResponder API  217  ■  Example of using
PanResponder  218

	 10	 Implementing iOS-specific components and APIs  222
	10.1	 Targeting platform-specific code  223

iOS and Android file extensions  223  ■  Detecting the platform
using the Platform API  224

	10.2	 DatePickerIOS  226
Example of using DatePickerIOS  226

	10.3	 Using PickerIOS to work with lists of values  228
Example of using PickerIOS  230

	10.4	 Using ProgressViewIOS to show loading indicators  231
Use cases for ProgressViewIOS  232  ■  Example of using
ProgressViewIOS  232

	10.5	 Using SegmentedControlIOS to create horizontal tab bars  233
Use cases for SegmentedControlIOS  234  ■  Example of using
SegmentedControlIOS  234

xx contents

	10.6	 Using TabBarIOS to render tabs at the bottom of
the UI  235
Use cases for TabBarIOS  236  ■  Example of using
TabBarIOS  237

	10.7	 Using ActionSheetIOS to show action or share sheets  238
Use cases for ActionSheetIOS  239  ■  Example of using
ActionSheetIOS  239

	 11	 Implementing Android-specific components and APIs  242
	11.1	 Creating a menu using DrawerLayoutAndroid  243

	11.2	 Creating a toolbar with ToolbarAndroid  247

	11.3	 Implementing scrollable paging with
ViewPagerAndroid  248

	11.4	 Using the DatePickerAndroid API to show a native date
picker  251

11.5	 Creating a time picker with TimePickerAndroid  253

11.6	 Implementing Android toasts using ToastAndroid  256

Part 4	 Bringing it all together......................... 261

	 12	 Building a Star Wars app using cross-platform components  263
	12.1	 Creating the app and installing dependencies  265

Importing the People component and creating the Container
component  266  ■  Creating the navigation component and
registering routes  267  ■  Creating the main class for the initial
view  267

12.2	 Creating the People component using FlatList, Modal,
and Picker  270
Creating the state and setting up a fetch call to
retrieve data  271  ■  Adding the remaining class
methods  273  ■  Implementing the render method  274

	12.3	 Creating the HomeWorld component  276
Creating the HomeWorld class and initializing
state  276  ■  Fetching data from the API using the url
prop  278  ■  Wrapping up the HomeWorld component  279

			 appendix  281

			 index  285

xi

preface
I’ve always been fascinated with the idea of mobile application development. Building
mobile apps was one of the reasons I wanted to learn how to code. This fascination has
lead me down many paths, from Objective-C to jQuery mobile to Cordova and now to
React Native.

Because my career has centered around writing JavaScript, I’ve also always been
drawn to technologies that increase my efficiency by using my existing skillset, allowing
me to do more than just web development. Finding ways to be more efficient has been
core to my career when choosing paths to follow and rabbit holes to dive into.

When React Native first landed, I knew that it was going to be something signifi-
cant. There were already thousands of React and JavaScript developers in the world.
React Native gave these developers a way to extend their existing skillset into the realm
of mobile application development in a way that Cordova and other options didn’t,
and also appealed heavily to React developers who were at the time the most rapidly
growing segment of all frontend developers. The framework also delivered a substantial
increase in quality of applications that could be built versus other options available in
the same space.

After writing my first application and shipping it to the app store, I had learned quite
a bit and decided to start answering questions on Stack Overflow. I quickly realized that
I had valuable knowledge I could share, while helping the community as well my career,
so I began hanging out there more and more, answering questions.

I learned a lot while answering these questions, and eventually I made a conscious
decision to specialize 100% in the React Native framework. I heard from many suc-
cessful developers and consultants that specializing had helped them in their careers:
they were more productive, got more business, and could demand a higher rate. So, I

xii prefacexii

decided to try being a specialist for the first time in my career. This decision turned out
to be great for me; I quickly began getting leads for consulting and, later, training.

I’ve watched the React Native framework grow from its infancy to what it is today
and have seen many developers and companies rapidly increase their efficiency and
productivity by taking advantage of what the framework has to offer. I think we’re at an
exciting time for React Native: many Fortune 500 companies and enterprises are pick-
ing it up, finally solidifying it as a first-class choice in their developer toolkits and giving
more confidence to people who are considering betting their companies and applica-
tions on the framework. It will be exciting to watch the framework evolve and to see the
new apps that will be shipped using React Native!

xiii

acknowledgments
This is the first time I’ve written a book. It has been a good learning experience,
and also much more work than I anticipated. While I’ve been writing, my career has
changed a couple of times and my obligations along with it, affecting the amount of
time I could commit to the book. Nickie Buckner and Marina Michaels are the reason
this book is complete. If it wasn’t for them, it would have been in editing indefinitely; I
was unable to rewrite a couple of chapters in a reasonable amount of time, and Nickie
stepped up in a huge way to finish the book. Marina also did more than what was called
for in helping the book make it the last 20% of the way as my time became increasingly
constrained.

Thank you to my wife, Lilly, who worked overtime in addition to her already exceed-
ingly high normal duties as I worked late nights in the office and sometimes at home
to write this book. Thank you to my kids, Victor and Eli, who are awesome; I love them
very much. And thank you to my parents for putting me in a position to be able to learn
things and get second, third, and fourth chances at life.

My thanks go to many groups and individuals: to the React Native community and
the React Native team (Jordan Walke, Christopher Chedeau, Adam Wolff, and every-
one at Facebook over the years whom I didn’t mention); to Monte Thakkar, who took
over React Native Elements’ open source while I was writing (and to all React Native
Training open source contributors); to Eric Vicenti and Brent Vatne and all the people
who have worked on Navigation and many other projects I use day to day; to Charlie
Cheever, who has, with Expo, pushed the development of many React Native projects
and, by extension, of Expo, and who has helped many open source projects; to Parasha-
rum N, who has been committed to building things around React Native for years, now
works on React Native at Facebook, and has always been a great asset to the community

xiv acknowledgmentsxiv

and ecosystem; to Peter Piekarczyk, Kevin Old, Lee Johnson, Gant Laborde, and Spen-
cer Carli, who have consistently helped with the “React Native Radio” podcast; to Russ
Davis and SchoolStatus, for the opportunity to learn React Native on the job, which is
how I got started with it in the first place; to Orta Therox and the people at Artsy, for
their commitment to the React Native community with their amazing blog and open
source; to Leland Richardson, Devin Abbott, and the team at Airbnb, who gave React
Native a fair shot and contributed extensively to the ecosystem even though the frame-
work didn’t work out for Airbnb in the long run; to the Wix team, who have contributed
many amazing projects to the React Native open source ecosystem; to Mike Grabowski
and Anna Lankauf, of Callstack, for being in charge of releasing React Native open
source, for many contributions to the React Native open source ecosystem, and for col-
laborating with me on things over the years; and to Jason Brown for pushing amazing
blog posts and teaching me about animations early on. I’m sure I left out many people,
and if that person is you, I apologize and thank you for your contribution, as well.

Finally, I want to thank the people at Manning who made this book possible: pub-
lisher Marjan Bace and everyone behind the scenes on the editorial and production
teams. My thanks also to the technical peer reviewers led by Aleksandar Dragosavljević:
Alessandro Campeis, Andriy Kharchuk, Francesco Strazzullo, Gonzalo Barba López,
Ian Lovell, Jason Rogers, Jose San Leandro, Joseph Tingsanchali, Markus Matzker,
Matej Strašek, Mattias Lundell, Nickie Buckner, Olaoluwa Oluro, Owen Morris, Roger
Sperberg, Stuart Rivero, Thomas Overby Hansen, Ubaldo Pescatore, and Zhuo Hong
Wei. On the technical side, my thanks to Michiel Trimpe, who served as the book’s tech-
nical editor; and Jason Rogers, who served as the book’s technical proofreader.

xv

about this book
React Native in Action was written to get you up and running with the React Native
framework as quickly and seamlessly as possible. It uses a combination of real-world
examples, discussions around APIs and development techniques, and a focus on learn-
ing things that will translate into real-world scenarios.

The book begins with an overview of React Native in chapter 1, following by a look
at how React works in chapter 2. From chapter 3 through the end of the book, you
build applications containing functionality you’ll use to build applications in the real
world. The book dives deep into topics such as data architecture, navigation, and ani-
mations, giving you a well-rounded understanding of how to build mobile apps using
React Native.

The book is divided into 4 parts and 12 chapters:

¡	Part 1, “Getting Started with React Native”:

¡	Chapter 1 gets you up and running with React Native by going over what React
Native is, how it works, its relationship with React, and when you might want
to use React Native (and when you might not). This chapter includes an over-
view of React Native’s components, which are at the core of React Native. It
concludes with creating a small React Native project.

¡	Chapter 2 covers state and props: what they are, how they work, and why
they’re important in React Native application development. It also covers the
React Component specification and React lifecycle methods.

¡	In chapter 3, you build your first React Native app—a todo app—from the
ground up, and you’ll learn about using the developer menu in iOS and
Android to, among other things, debug your app.

xvi about this bookxvi

¡	Part 2, “Developing Applications in React Native.” With the basics covered, you
can start adding features to your React Native app. The chapters in this part cover
styling, navigation, animations, and elegant ways to handle data using data archi-
tectures (with a focus on Redux):

¡	Chapters 4 and 5 teach you how to apply styles: either in line, with compo-
nents, or in stylesheets that components can reference. Because React Native
components are the main buildings blocks of your app’s UI, chapter 4 spends
some time teaching useful things you can do with the View component. Chap-
ter 5 builds on the skills taught in chapter 4; it covers aspects of styling that
are platform-specific, as well as some advanced techniques, including using
flexbox to make it easier to lay out applications.

¡	Chapter 6 shows how to use the two most-recommended and most-used
navigation libraries: React Navigation and React Native Navigation. We’ll
walk through creating the three main types of navigators—tabs, stack, and
drawer—and discuss how to control the navigation state.

¡	Chapter 7 covers the four things you need to do to create animations, the four
types of animatable components that ship with the Animated API, how to cre-
ate custom animatable components, and several other useful skills.

¡	In chapter 8, we explore handling data with data architectures. Because Redux
is the most widely adopted method of handling data in the React ecosystem,
you’ll use it to build an app. Through doing so, you’ll learn the skills needed
to handle data. You’ll see how to use the Context API and how to implement
Redux with a React Native app by using reducers to hold the Redux state and
delete items from the example app. You’ll also learn how to use providers to
pass global state to the rest of the app, how to use the connect function to
access the example app from a child component, and how to use actions to
add functionality.

¡	Part 3, “API Reference.” React Native offers a wealth of APIs. The chapters in
this part cover cross-platform APIs as well as APIs that are specific to the iOS and
Android platforms:

¡	Chapter 9 explores using React Native’s cross-platform APIs: APIs that can be
used on either iOS or Android to create alerts; detect whether the app is in the
foreground, in the background, or inactive; persist, retrieve, and remove data;
store and update text to the device clipboard; and perform a number of other
useful features.

¡	Chapters 10 and 11 look at React Native’s APIs that are specific to either the
iOS platform or the Android platform.

¡	Part 4, “Bringing It All Together.” This part pulls together everything covered
in the previous chapters—styling, navigation, animations, and some of the
cross-platform components—into a single app:

	 xviiabout this book 	 xvii

¡	Chapter 12 starts by looking at the final design and walking through a basic
overview of what the app will do. Then, you’ll create a new React Native appli-
cation and install the React Navigation library, dive deep into styling both the
components as well as the navigation UI, work with data from external net-
work resources by using the fetch API, and ultimately build out an application
that allows users to view information about their favorite Star Wars characters.

Source code
This book contains many examples of source code, both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this was not enough, and listings include line-continuation
markers (➥).

Additionally, comments in the source code have often been removed from the list-
ings when the code is described in the text. Code annotations accompany many of the
listings, highlighting important concepts.

Source code for the book’s examples is available from the publisher’s website at www.
manning.com/books/react-native-in-action and on GitHub at https://github.com/
dabit3/react-native-in-action.

Book forum
Purchase of React Native in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/react-native-in-action/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://live-
book.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
logue between individual readers and between readers and the author can take place. It
is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and the
archives of previous discussions will be accessible from the publisher’s website as long as
the book is in print.

http://www.manning.com/books/react-native-in-action
http://www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action
https://github.com/dabit3/react-native-in-action
https://livebook.manning.com/#!/book/react-native-in-action/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

xviii

about the author
Nader Dabit is a developer advocate at AWS Mobile, where he works on tools and ser-
vices to allow developers to build full-stack web and mobile applications using their
existing skillset. He is also the founder of React Native Training and the host of the
“React Native Radio” podcast.

xix

about the cover illustration
The figure on the cover of React Native in Action is captioned “Insulaire D’Amboine”
or “Islander of Amboine.” The illustration is taken from a nineteenth-century edition
of Sylvain Maréchal’s four-volume compendium of regional dress customs published
in France. Each illustration is finely drawn and colored by hand. The rich variety of
Maréchal’s collection reminds us vividly of how culturally apart the world’s towns and
regions were just 200 years ago. Isolated from each other, people spoke different dia-
lects and languages. Whether on city streets, in small towns, or in the countryside, it
was easy to identify where they lived and what their trade or station in life was just by
their dress.

Dress codes have changed since then and the diversity by region and class, so rich at
the time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity for a
more varied personal life—certainly for a more varied and fast-paced technological life.

At a time when it is hard to tell one computer book from another, Manning cel-
ebrates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.

Part 1

Getting started with
React Native

Chapter 1 will get you up and running by going over what React Native is,
how it works, what its relationship with React is, and when you might want to use
React Native (and when you might not). This chapter provides an overview of
React Native’s components, which are at the core of React Native. It concludes
with creating a small React Native project.

Chapter 2 covers state and properties: what they are, how they work, and why
they’re important in React Native application development. It also covers the
React Component specification and React lifecycle methods.

In chapter 3, you’ll build your first React Native app—a Todo app—from the
ground up. You’ll also learn about using the developer menu in iOS and Android
for, among other things, debugging apps.

3

1Getting started with
React Native

This chapter covers
¡	Introducing React Native

¡	The strengths of React Native

¡	Creating components

¡	Creating a starter project

Native mobile application development can be complex. With the complicated
environments, verbose frameworks, and long compilation times developers face,
developing a quality native mobile application is no easy task. It’s no wonder the
market has seen its share of solutions come onto the scene that attempt to solve the
problems that go along with native mobile application development and try to make
it easier.

At the core of this complexity is the obstacle of cross-platform development. The
various platforms are fundamentally different and don’t share much of their devel-
opment environments, APIs, or code. Because of this, we must have separate teams
working on each platform, which is both expensive and inefficient.

But this is an exciting time in mobile application development. We’re witnessing
a new paradigm in the mobile development landscape, and React Native is on the
forefront of this shift in how we build and engineer mobile applications. It’s now

4 Chapter 1  Getting started with React Native

possible to build native performing cross-platform apps as well as web applications with
a single language and a single team. With the rise of mobile devices and the subse-
quent increase in demand for talent driving developer salaries higher and higher, React
Native brings to the table the ability to deliver quality applications across all platforms at
a fraction of the time and cost, while still delivering a high-quality user experience and
a delightful developer experience.

1.1	 Introducing React and React Native
React Native is a framework for building native mobile apps in JavaScript using the
React JavaScript library; React Native code compiles to real native components. If
you’re not sure what React is, it’s a JavaScript library open sourced by and used within
Facebook. It was originally used to build user interfaces for web applications. It has
since evolved and can now also be used to build server-side and mobile applications
(using React Native).

React Native has a lot going for it. In addition to being backed and open sourced by
Facebook, it also has a tremendous community of motivated people behind it. Face-
book groups, with their millions of users, are powered by React Native as well as Face-
book Ads Manager. Airbnb, Bloomberg, Tesla, Instagram, Ticketmaster, SoundCloud,
Uber, Walmart, Amazon, and Microsoft are some of the other companies either invest-
ing in or using React Native in production.

With React Native, developers can build native views and access native platform-specific
components using JavaScript. This sets React Native apart from other hybrid app frame-
works like Cordova and Ionic, which package web views built using HTML and CSS into a
native application. Instead, React Native takes JavaScript and compiles it into a true native
application that can use platform-specific APIs and components. Alternatives like Xama-
rin take the same approach, but Xamarin apps are built using C#, not JavaScript. Many web
developers have JavaScript experience, which helps ease the transition from web to mobile
app development.

There are many benefits to choosing React Native as a mobile application frame-
work. Because the application renders native components and APIs directly, speed and
performance are much better than with hybrid frameworks such as Cordova and Ionic.
With React Native, we’re writing entire applications using a single programming lan-
guage: JavaScript. We can reuse a lot of code, thereby reducing the time it takes to ship
a cross-platform application. And hiring and finding quality JavaScript developers is
much easier and cheaper than hiring Java, Objective C, or Swift developers, leading to
an overall less-expensive process.

NOTE   React Native applications are built using JavaScript and JSX. We’ll dis-
cuss JSX in depth in this book, but for now think of it as a JavaScript syntax
extension that looks like HTML or XML.

We’ll dive much deeper into React in chapter 2. Until then, let’s touch on a few core
concepts as an introduction.

	 5Introducing React and React Native

1.1.1	 A basic React class

Components are the building blocks of a React or React Native application. The entry
point of an application is a component that requires and is made of other compo-
nents. These components may also require other components, and so on.

There are two main types of React Native components: stateful and stateless. Here’s an
example of a stateful component using an ES6 class:

class HelloWorld extends React.Component {
 constructor() {
 super()
 this.state = { name: 'Chris' }
 }

 render () {
 return (
 <SomeComponent />
)
 }
}

And here’s an example of a stateless component:

const HelloWorld = () => (
 <SomeComponent />
)

The main difference is that stateless components don’t hook into any lifecycle meth-
ods and hold no state of their own, so any data to be rendered must be received as
properties (props). We’ll go through the lifecycle methods in depth in chapter 2, but
for now let’s take a first look at them and look at a class.

Listing 1.1   Creating a basic React Native class

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

class HelloWorld extends React.Component {
 constructor () {
 super()
 this.state = {
 name: 'React Native in Action'
 }
 }
 componentDidMount () {
 console.log('mounted..')
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>{this.state.name}</Text>
 </View>
)
 }

Constructor sets a state object
with a name property

Final lifecycle method

Calls render()

6 Chapter 1  Getting started with React Native

}

const styles = StyleSheet.create({
 container: {
 marginTop: 100,
 flex: 1
 }
})

NOTE   Something to keep in mind when we discuss the following methods is
the concept of mounting. When a component is created, the React component
lifecycle is instantiated, triggering the methods used in listing 1.1.

At the top of the file, you require React from 'react', as well as View, Text, and
StyleSheet from 'react-native'. View is the most fundamental building block for
creating React Native components and the UI in general and can be thought of like a
div in HTML. Text allows you to create text elements and is comparable to a span tag
in HTML. StyleSheet lets you create style objects to use in an application. These two
packages (react and react-native) are available as npm modules.

When the component first loads, you set a state object with the property name in the
constructor. For data in a React Native application to be dynamic, it needs to be either
set in the state or passed down as props. Here, you set the state in the constructor and
can therefore change it if desired by calling

this.setState({
 name: 'Some Other Name'
})

which rerenders the component. Setting the variable in state allows you to update the
value elsewhere in the component.

render is then called: it examines the props and state and then must return a single
React Native element, null, or false. If you have multiple child elements, they must be
wrapped in a parent element. Here, the components, styles, and data are combined to
create what will be rendered to the UI.

The final method in the lifecycle is componentDidMount. If you need to do any API
calls or AJAX requests to reset the state, this is usually the best place to do so. Finally, the
UI is rendered to the device, and you can see the result.

1.1.2	 React lifecycle

When a React Native class is created, methods are instantiated that you can hook into.
These methods are called lifecycle methods, and we’ll cover them in depth in chapter 2.
The methods in listing 1.1 are constructor, componentDidMount, and render, but
there are a few more, and they all have their own use cases.

Lifecycle methods happen in sync and help manage the state of components as well
as execute code at each step of the way, if you wish. The only required lifecycle method is
render; all the others are optional. When working with React Native, you’re fundamen-
tally working with the same lifecycle methods and specifications you’d use with React.

	 7What you should know

1.2	 What you’ll learn
In this book, we’ll cover everything you need to know to build robust mobile applica-
tions for iOS and Android using the React Native framework. Because React Native
is built using the React library, we’ll begin in chapter 2 by covering and thoroughly
explaining how React works.

We’ll then cover styling, touching on most of the styling properties available in the
framework. Because React Native uses flexbox for laying out the UI, we’ll dive deep into
how flexbox works and discuss all the flexbox properties. If you’ve used flexbox in CSS
for layout on the web, all of this will be familiar to you, but keep in mind that the flexbox
implementation used by React Native isn’t 100% the same.

We’ll then go through many of the native components that come with the framework
out of the box and walk through how each of them works. In React Native, a component
is basically a chunk of code that provides a specific functionality or UI element and can
easily be used in the application. Components are covered extensively throughout this
book because they’re the building blocks of a React Native application.

There are many ways to implement navigation, each with its own nuances, pros, and
cons. We’ll discuss navigation in depth and cover how to build robust navigation using
the most important of the navigation APIs. We’ll cover not only the native navigation
APIs that come out of the box with React Native, but also a couple of community proj-
ects available through npm.

Next, we’ll discuss in depth both cross-platform and platform-specific APIs avail-
able in React Native and how they work. It will then be time for you to start working
with data using network requests, AsyncStorage (a form of local storage), Firebase, and
WebSocket. Then we’ll dive into the different data architectures and how each of them
works to handle the state of the application. Finally, we’ll look at testing and a few differ-
ent ways to test in React Native.

1.3	 What you should know
To get the most out of this book, you should have beginner to intermediate knowledge
of JavaScript. Much of your work will be done with the command line, so a basic under-
standing of how to use the command line is also needed. You should also understand
what npm is and how it works on at least a fundamental level. If you’ll be building in
iOS, a basic understanding of Xcode is beneficial and will speed things along but isn’t
required. Similarly, if you’re building for Android, a basic understanding of Android
Studio will be beneficial but not required.

Fundamental knowledge of newer JavaScript features implemented in the ES2015
release of the JavaScript programming language is beneficial but not necessary. Some
conceptual knowledge of MVC frameworks and single-page architecture is also good
but not required.

8 Chapter 1  Getting started with React Native

1.4	 Understanding how React Native works
Let’s look at how React Native works by discussing JSX, the threading model, React,
unidirectional data flow, and more.

1.4.1	 JSX

React and React Native both encourage the use of JSX. JSX is basically a syntax exten-
sion to JavaScript that looks similar to XML. You can build React Native components
without JSX, but JSX makes React and React Native a lot more readable and easier to
maintain. JSX may seem strange at first, but it’s extremely powerful, and most people
grow to love it.

1.4.2	 Threading

All JavaScript operations, when interacting with the native platform, are done in a sep-
arate thread, allowing the user interface as well as any animations to perform smoothly.
This thread is where the React application lives, and where all API calls, touch events,
and interactions are processed. When there’s a change to a native-backed component,
updates are batched and sent to the native side. This happens at the end of each iter-
ation of the event loop. For most React Native applications, the business logic runs on
the JavaScript thread.

1.4.3	 React

A great feature of React Native is that it uses React. React is an open source JavaScript
library that’s also backed by Facebook. It was originally designed to build applications
and solve problems on the web. This framework has become extremely popular since
its release, with many established companies taking advantage of its quick rendering,
maintainability, and declarative UI, among other things.

Traditional DOM manipulation is slow and expensive in terms of performance and
should be minimized. React bypasses the traditional DOM with something called the
virtual DOM: basically, a copy of the actual DOM in memory that only changes when
comparing new versions of the virtual DOM to old versions of the virtual DOM. This
minimizes the number of DOM operations required to achieve the new state.

1.4.4	 Unidirectional data flow

React and React Native emphasize unidirectional, or one-way, data flow. Because of
how React Native applications are built, this one-way data flow is easy to achieve.

1.4.5	 Diffing

React takes the idea of diffing and applies it to native components. It takes your UI and
sends the smallest amount of data to the main thread to render it with native compo-
nents. The UI is declaratively rendered based on the state, and React uses diffing to
send the necessary changes over the bridge.

	 9Understanding how React Native works

1.4.6	 Thinking in components

When building a UI in React Native, it’s useful to think of your application as being
composed of a collection of components. Thinking about how a page is set up, you
already do this conceptually, but using concepts, names, or class names like header,
footer, body, sidebar, and so on. With React Native, you can give these components names
that make sense to you and other developers who may be using your code, making it
easy to bring new people into a project or hand a project off to someone else.

Suppose a designer has handed you the example mockup shown in figure 1.1. Let’s
think of how to conceptualize this into components.

The first thing to do is to mentally break the UI elements into what they represent.
The example mockup has a header bar, and within the header bar are a title and a

Figure 1.1   Example app design

http://todomvc.com

http://todomvc.com

www.manning.com/books/react-native-in-action
www.manning.com/books/usability-matters

﻿https://yogalayout.com

https://github.com/dabit3/react-native-fonts

https://github.com/dabit3/react-native-in-action/blob/chapter7/assets/35633-200.png

https://swapi.co)
https://swapi.co/api/people
https://swapi.co/api/people

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/tree/chapter
https://github.com/dabit3/react-native-in-action/tree/chapter
12
/StarWars
).

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/App.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/App.js

https://swapi.co/api/people

https://swapi.co/api/people

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js

www.manning.com/books/react-native-in-action
www.manning.com/books/react-native-in-action
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js
https://github.com/dabit3/react-native-in-action/blob/chapter12/StarWars/People.js

http://brew.sh

http://brew.sh
https://developer.android.com/studio/install.html

https://github.com/facebook/watchman/issues/19
https://github.com/facebook/watchman/issues/19
https://chocolatey.org/
https://developer.android.com/studio/install.html
https://developer.android.com/studio/install.html
https://nodejs.org/en/download/package-manager
https://nodejs.org/en/download/package-manager
https://developer.android.com/studio/install.html
https://developer.android.com/studio/install.html
https://facebook.github.io/watchman/docs/install.html#installing-from-source
https://facebook.github.io/watchman/docs/install.html#installing-from-source

https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-in-action
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/get-programming-with-javascript-next

https://www.manning.com/books/angular-2-development-with-typescript
https://www.manning.com/books/angular-in-action
https://www.manning.com/books/testing-angular-applications
https://www.manning.com/books/usability-matters

https://www.manning.com/books/vue-js-in-action
https://www.manning.com/books/testing-vue-js-applications
https://www.manning.com/books/rxjava-for-android-developers
https://www.manning.com/books/ios-development-with-swift

	React Native in Action: Developing iOS and Android apps with JavaScript
	contents
	preface
	acknowledgments
	about this book
	about the author
	about the cover illustration
	Part 1: Getting started with React Native
	1 Getting started with React Native
	1.1	Introducing React and React Native
	1.1.1	A basic React class
	1.1.2	React lifecycle

	1.2	What you?ll learn
	1.3	What you should know
	1.4	Understanding how React Native works
	1.4.1	JSX
	1.4.2	Threading
	1.4.3	React
	1.4.4	Unidirectional data flow
	1.4.5	Diffing
	1.4.6	Thinking in components

	1.5	Acknowledging React Native?s strengths
	1.5.1	Developer availability
	1.5.2	Developer productivity
	1.5.3	Performance
	1.5.4	One-way data flow
	1.5.5	Developer experience
	1.5.6	Transpilation
	1.5.7	Productivity and efficiency
	1.5.8	Community
	1.5.9	Open source
	1.5.10	Immediate updates
	1.5.11	Other solutions for building cross-platform mobile applications

	1.6	React Native?s drawbacks
	1.7	Creating and using basic components
	1.7.1	An overview of components
	1.7.2	Native components
	1.7.3	Component composition
	1.7.4	Exportable components
	1.7.5	Combining components

	1.8	Creating a starter project
	1.8.1	Create React Native App CLI
	1.8.2	React Native CLI

	2 Understanding React
	2.1	Managing component data using state
	2.1.1	Correctly manipulating component state

	2.2	Managing component data using props
	2.3	React component specifications
	2.3.1	Using the render method to create a UI
	2.3.2	Using property initializers and constructors

	2.4	React lifecycle methods
	2.4.1	The static getDerivedStateFromProps method
	2.4.2	The componentDidMount lifecycle method
	2.4.3	The shouldComponentUpdate lifecycle method
	2.4.4	The componentDidUpdate lifecycle method
	2.4.5	The componentWillUnmount lifecycle method

	3 Building your first React Native app
	3.1	Laying out the Todo app
	3.2	Coding the todo app
	3.3	Opening the developer menu
	3.3.1	Opening the developer menu in the iOS simulator
	3.3.2	Opening the developer menu in the Android emulator
	3.3.3	Using the developer menu

	3.4	Continuing building the todo app

	Part 2: Developing applications in React Native
	4 Introduction to styling
	4.1	Applying and organizing styles in React Native
	4.1.1	Applying styles in applications
	4.1.2	Organizing styles
	4.1.3	Styles are code

	4.2	Styling view components
	4.2.1	Setting the background color
	4.2.2	Setting border properties
	4.2.3	Specifying margins and padding
	4.2.4	Using position to place components
	4.2.5	Profile Card positioning

	4.3	Styling Text components
	4.3.1	Text components vs. View components
	4.3.2	Font styles
	4.3.3	Using decorative text styles

	5 Styling in depth
	5.1	Platform-specific sizes and styles
	5.1.1	Pixels, points, and DPs
	5.1.2	Creating drop shadows with ShadowPropTypesIOS and Elevation
	5.1.3	Putting it into practice: drop shadows in the ProfileCard

	5.2	Using transformations to move, rotate, scale, and skew?components
	5.2.1	3D effects with perspective
	5.2.2	Moving elements along the x- and y-axes with translateX and?translateY
	5.2.3	Rotating elements with rotateX, rotateY, and rotateZ (rotate)
	5.2.4	Setting visibility when rotating an element more than 90?
	5.2.5	Scaling objects on the screen with scale, scaleX, and scaleY
	5.2.6	Using the scale transform to create a thumbnail of the ProfileCard
	5.2.7	Skewing elements along the x- and y-axes with skewX and skewY
	5.2.8	Transformation key points

	5.3	Using flexbox to lay out components
	5.3.1	Altering a component?s dimensions with flex
	5.3.2	Specifying the direction of the flex with flexDirection
	5.3.3	Defining how space is used around a component with?justifyContent
	5.3.4	Aligning children in a container with alignItems
	5.3.5	Overriding the parent container?s alignment with alignSelf
	5.3.6	Preventing clipped items with flexWrap

	6 Navigation
	6.1	React Native navigation vs. web navigation
	6.2	Building a navigation-based app
	6.3	Persisting data
	6.4	Using DrawerNavigator to create drawer-based navigation

	7 Animations
	7.1	Introducing the Animated API
	7.2	Animating a form input to expand on focus
	7.3	Creating a custom loading animation using interpolation
	7.4	Creating multiple parallel animations
	7.5	Creating an animated sequence
	7.6	Using Animated.stagger to stagger animation start times
	7.7	Other useful tips for using the Animated library
	7.7.1	Resetting an animated value
	7.7.2	Invoking a callback
	7.7.3	Offloading animations to the native thread
	7.7.4	Creating a custom animatable component using createAnimatedComponent

	8 Using the Redux data architecture library
	8.1	What is Redux?
	8.2	Using context to create and manage global state in?a?React application
	8.3	Implementing Redux with a React Native app
	8.4	Creating Redux reducers to hold Redux state
	8.5	Adding the provider and creating the store
	8.6	Accessing data using the connect function
	8.7	Adding actions
	8.8	Deleting items from a Redux store in a reducer

	Part 3: API reference
	9 Implementing
	9.1	Using the Alert API to create cross-platform notifications
	9.1.1	Use cases for alerts
	9.1.2	Example of using alerts

	9.2	Using the AppState API to detect the current application state
	9.2.1	Use cases for AppState
	9.2.2	Example of using AppState

	9.3	Using the AsyncStorage API to persist data
	9.3.1	Use cases for AsyncStorage
	9.3.2	Example of using AsyncStorage

	9.4	Using the Clipboard API to copy text into the user?s?clipboard
	9.4.1	Use cases for Clipboard
	9.4.2	Example of using Clipboard

	9.5	Using the Dimensions API to get the user?s screen?information
	9.5.1	Use cases for the Dimensions API
	9.5.2	Example of using the Dimensions API

	9.6	Using the Geolocation API to get the user?s current location information
	9.6.1	Use cases for the Geolocation API
	9.6.2	Example of using Geolocation

	9.7	Using the Keyboard API to control the location and functionality of the native keyboard
	9.7.1	Use cases for the Keyboard API
	9.7.2	Example of using the Keyboard API

	9.8	Using NetInfo to get the user?s current online/offline?status
	9.8.1	Use cases for NetInfo
	9.8.2	Example of using NetInfo

	9.9	Getting information about touch and gesture events with PanResponder
	9.9.1	Use cases for the PanResponder API
	9.9.2	Example of using PanResponder

	10 Implementing iOS-specific components and APIs
	10.1	Targeting platform-specific code
	10.1.1	iOS and Android file extensions
	10.1.2	Detecting the platform using the Platform API

	10.2	DatePickerIOS
	10.2.1	Example of using DatePickerIOS

	10.3	Using PickerIOS to work with lists of values
	10.3.1	Example of using PickerIOS

	10.4	Using ProgressViewIOS to show loading indicators
	10.4.1	Use cases for ProgressViewIOS
	10.4.2	Example of using ProgressViewIOS

	10.5	Using SegmentedControlIOS to create horizontal tab?bars
	10.5.1	Use cases for SegmentedControlIOS
	10.5.2	Example of using SegmentedControlIOS

	10.6	Using TabBarIOS to render tabs at the bottom of the UI
	10.6.1	Use cases for TabBarIOS
	10.6.2	Example of using TabBarIOS

	10.7	Using ActionSheetIOS to show action or share sheets
	10.7.1	Use cases for ActionSheetIOS
	10.7.2	Example of using ActionSheetIOS

	11 Implementing Android-specific components and APIs
	11.1	Creating a menu using DrawerLayoutAndroid
	11.2	Creating a toolbar with ToolbarAndroid
	11.3	Implementing scrollable paging with ViewPagerAndroid
	11.4	Using the DatePickerAndroid API to show a native date picker
	11.5	Creating a time picker with TimePickerAndroid
	11.6	Implementing Android Toasts using ToastAndroid

	Part 4: Bringing it all together
	12 Building a Star Wars app using cross-platform components
	12.1	Creating the app and installing dependencies
	12.1.1	Importing the People component and creating the Container component
	12.1.2	Creating the navigation component and registering routes
	12.1.3	Creating the main class for the initial view

	12.2	Creating the People component using FlatList, Modal, and Picker
	12.2.1	Creating the state and setting up a fetch call to retrieve data
	12.2.2	Adding the remaining class methods
	12.2.3	Implementing the render method

	12.3	Creating the HomeWorld component
	12.3.1	Creating the HomeWorld class and initializing state
	12.3.2	Fetching data from the API using the url prop
	12.3.3	Wrapping up the HomeWorld component

	index

