

Getting Started with Grunt: The

JavaScript Task Runner

A hands-on approach to mastering the fundamentals

of Grunt

Jaime Pillora

BIRMINGHAM - MUMBAI

Getting Started with Grunt: The JavaScript Task Runner

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing and its dealers and distributors, will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1170114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-062-8

www.packtpub.com

The cover image is trademarked Bocoup LLC

Credits

Author
Jaime Pillora

Reviewers
Peter deHaan

Arnaud Tanielian

Acquisition Editors
Kartikey Pandey

Meeta Rajani

Lead Technical Editor
Sruthi Kutty

Technical Editors
Shashank Desai

Aman Preet Singh

Anand Singh

Project Coordinator
Aboli Ambardekar

Proofreader
Lauren Harkins

Indexer
Monica Ajmera Mehta

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

About the Author

Jaime Pillora is a passionate full-stack JavaScript developer, an open source
advocate and contributor, and is currently the CTO of Luma Networks, a well-
funded networking startup in Sydney, Australia.

Jaime has always been interested in all things computer science, and from a young
age, he began to devote his time and effort to learning and perfecting his knowledge
in the field. Jaime holds a Bachelor of Computer Science from the University of
New South Wales. In all of his work, Jaime strives to reduce technical debt while
maintaining maximum efficiency; this is done through software engineering best
practices, combined with using the best tools for the given situation. Grunt is one
such tool, which is utilized in every frontend project. Jaime's interest in Grunt began
early on in his development career and he has since become a renowned expert.

Jaime has been working as a frontend JavaScript developer since 2008, and a backend
JavaScript developer utilizing Node.js since 2011. Currently, Jaime leads all software
development at Luma Networks, who is implementing software-defined networking
on commodity hardware utilizing JavaScript.

I would like to thank my loving partner, Jilarra, for her support
during the many hours put into this book, and her contribution to
the proofreading and editing of the final drafts.

About the Reviewers

Peter deHaan likes Grunt a lot and thinks it's the best thing to happen to Node.js
since npm. You can follow his Grunt npm-twitter-bot feed at @gruntweekly.

Arnaud Tanielian is a happy French web developer who specializes in frontend
projects such as FullJS, standards, HTML5, and GruntJS. He is a freelancer,
traveling around the world and working from coffee shops to bars, currently
living in Melbourne, Australia.

Look for @Danetag on the Internet and you'll find some cool projects, fun, and
French clichés.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

Table of Contents

Preface 1
Chapter 1: Introducing Grunt 7

What is Grunt? 7
Why use Grunt? 9
Benefits of Grunt 10
Efficiency	 10
Consistency	 10
Effectiveness	 11
Community	 11
Flexibility	 12

Real-world use cases 13
Static	analysis	or	Linting	 13
Transcompilation	 16
CoffeeScript	 16

Minification 20
Concatenation 21
Deployment 23
FTP	 23
SFTP	 25
S3	 27

Summary 28
Chapter 2: Setting Up Grunt 29

Installation 29
Node.js	 29
Modules	 31
npm	 33
Finding	modules	 35
Installing	modules	 35

Table of Contents

[ii]

Grunt	 37
Project setup 38
package.json	 39
Gruntfile.js	 42
Directory	structure	 43

Configuring tasks 44
Configuring	multitasks	 47
Configuring	options	 48
Configuring	files	 49
Single	set	of	source	files	 51
Multiple	sets	of	source	files	 51
Mapping	a	source	directory	to	destination	directory	 52

Templates	 53
Summary 54

Chapter 3: Using Grunt 55
Creating your own tasks 55
Tasks	 55
The	task	object	 56
Task	aliasing	 57

Multitasks	 58
The	multitask	object	 60

Asynchronous	tasks	 61
Running tasks 62
Command-line	 62
Task	arguments	 65
Runtime	options	 66
Task	help	 67

Programmatically	 69
Automatically	 70

Using third-party tasks 72
Searching	for	tasks	 72
Official	versus	user	tasks	 72
Task	popularity	 73
Task	features	 73
Task	stars	 74

Summary 74
Chapter 4: Grunt in Action 75

Creating the build 75
Step	1	–	initial	directory	setup	 76
Step	2	–	initial	configuration	 76
Step	3	–	organizing	our	source	files	 81
Scripts	 81

Table of Contents

[iii]

Views	 85
Styles	 87

Step	4	–	optimizing	our	build	files	 88
Scripts	 89
Styles	 90
Views	 91

Step	5	–	tasks	and	options	 92
Step	6	–	improving	development	flow	 94
Step	7	–	deploying	our	application	 97

Summary 99
Chapter 5: Advanced Grunt 101

Testing with Grunt 101
Continuous integration with Grunt 103
External tasks 103
Grunt plugins 104
Useful	plugins	 108

JavaScript resources 109
Development tools 110
Author	picks	 110
Mac	OS	X	 110
Sublime	Text	 111
SourceTree	 111
Chrome	DevTools	 111

Community	picks	 111
WebStorm	 111
Yeoman	 112

Summary 112
Index 113

Preface

Getting Started with Grunt: The JavaScript Task Runner is an introduction to the
popular JavaScript build tool, Grunt. This book aims to provide the reader with
a practical skillset, which can be used to solve real-world problems. This book is
example driven, so each feature covered in this book is explained and also reinforced
through the use of runnable examples, this dual method of learning will provide the
reader with the means to verify that the theory aligns with its practical use.

All of the software used in this book is open source and when covered, some will
be accompanied with a short history while crediting the author. These open source
developers do not release their work for monetary gain, instead, they hope to
provide utility for others and to forward the community, and for this, they should be
duly recognized.

What this book covers
Chapter 1, Introducing Grunt, explains exactly what Grunt is and why we would
want to use it. Then, instead of starting at the very beginning, we temporarily jump
ahead to review a set of real-world examples. This gives us a glimpse of what
Grunt can do, which will help us to see how we could use Grunt in our current
development workflow.

Chapter 2, Setting Up Grunt, after finishing our forward escapade, we jump back to
the very beginning and start with the two primary technologies surrounding Grunt:
Node.js and its package manager—npm. Then, we proceed to installing each of
these tools and setting up our first Grunt environment. Next, we learn about the
package.json and Gruntfile.js files and how they are used to configure a Grunt
build. We will also cover the various Grunt methods used for configuration and the
types of situations where each is useful.

Preface

[2]

Chapter 3, Using Grunt, extends on what we learned in the previous chapter, to the
use and creation of tasks that consume our freshly made configuration. We will cover
tasks, multitasks, and asynchronous tasks. We look in-depth into the task object and
how we can use it effectively to perform common file-related actions. Finally, we
review running Grunt tasks and methods that customize Grunt execution to
our benefit.

Chapter 4, Grunt in Action, begins with an empty folder and gradually constructs a
Grunt environment for a web application. Throughout this process, we use various
examples from Chapter 1, Introducing Grunt, make use of the configuration strategies
from Chapter 2, Setting Up Grunt, and include some extra features from Chapter 3,
Using Grunt. At the end of this chapter, we shall be left with a Grunt environment
that compiles and optimizes our CoffeeScript, Jade, and Stylus, and deploys our
resulting web application to Amazon's S3.

Chapter 5, Advanced Grunt, introduces some of the more advanced use cases for
Grunt; these introductions are intended to be purely an entry to each topic while
providing the resources to learn more. We briefly cover testing with Grunt, Grunt
plugins, advanced JavaScript, development tools and more.

What you need for this book
In order to run Grunt, you need an operating system capable of running
Node.js; this includes Windows, Mac OS X, and certain flavors of Linux. You also
need a command-line interface of some form; in Windows, you can use PowerShell
or Command Prompt, and on Mac OS X and Linux, you will find a Terminal
application available for use.

Who this book is for
The only requirement for this book is a basic understanding of JavaScript. The
two most important JavaScript concepts to know are objects and functions. An
understanding of how JavaScript Object Notation (JSON) data is structured is also
required, however, this will follow naturally from learning JavaScript objects. From
this starting point, you are able to enter the world of Grunt and begin to improve
your development workflow.

Preface

[3]

If you are not familiar with JavaScript yet, Code Academy
(http://gswg.io#code-academy) offers a fast and interactive introduction to the
basics of JavaScript programming. If you have more time, Marijn Haverbeke's Eloquent
JavaScript (http://gswg.io#eloquent-javascript) is a perfect book to give
you a general understanding of what programming actually is, while focusing on
JavaScript at the same time. In the free (Creative Commons License) HTML version
of Eloquent JavaScript, Marijn uses the fact that you are reading the book in a Web
Browser to his advantage by allowing you to run and edit the code examples right
in the page. This interactive reading experience is extremely powerful, and I highly
recommend Eloquent JavaScript.

Conventions
In this book, various font styles are used to differentiate between different types
of information. Here are some examples of these styles, and an explanation of
their meaning:

When referring to a short piece of information that relates to the code examples,
like a variable or property name, or file or directory name, we'll use a light
mono-space font:

"Based on this task, we notice that each file in the files array contains src and
dest properties."

When referring to a large piece of information that relates to the code examples,
like a portion of code, the contents of a file or the output from the command-line
interface, we use black mono-space font:

grunt.initConfig({
 stringCheck: {
 file: './src/app.js',
 string: 'console.log('
 }
});

When referring to portion code in code, we note the example number and name at
the top in a JavaScript comment (that is, text beginning with //).

Preface

[4]

When specifying user command line input among the command-line output, using
Unix bash convention, we prepend a dollar symbol so we know what is input and
what is output:

$ echo "hello world"

hello world

When referring to new terms and important words, we display them in bold.

When conveying a URL, we'll prefix the text with "http://" and use a mono-space
font. This book's homepage (http://gswg.io/) is used as a URL shortener and as an
intermediary in case URLs need to be updated. For example:

"For more information, see the Grunt Website at http://gswg.io#grunt."

Code examples
You can download the code examples for Getting Started with Grunt at
http://gswg.io#examples. This URL will bring you to the Git repository housing
the examples for this book. Here, you can find the instructions for downloading
and running these examples. Once downloaded, you will find five folders, one for
each chapter. Throughout this book, many code snippets begin with a JavaScript
comment, referencing where that portion of code can be found within Code
examples. For example, in Chapter 2, Setting Up Grunt, the first code snippet begins
with //Code example 01-modules. Since we are currently reading Chapter 2, Setting
Up Grunt, you will find the 01-modules example inside the gswg-examples/2/01-
modules folder. If you are having problems running any of the examples or if you
find a bug in any of the examples, please open an issue on Github here:
http://gswg.io#examples-issues.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

Preface

[5]

If there is a topic in which you have expertise and you are interested in
either writing or contributing to a book, see our author guide at
http://www.packtpub.com/authors.

Customer support
Now you are the proud owner of a Packt book, we have a number of things to help
you to get the most from your purchase.

Errata
Though we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you find a mistake in one of our books—maybe a mistake in
the text or the code—we would be grateful if you would report this to us. By doing
so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on the
errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded
on our website, or added to any list of existing errata, under the Errata section of
that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Introducing Grunt

In this chapter, we will first define Grunt and cover some of the reasons why we
would want to use it. Then, instead of starting at the beginning, we'll temporarily
jump ahead to review some real-world use cases. Each example will contain a brief
summary, but it won't be covered in detail, as the purpose is to provide a glimpse of
what is to come. These examples will also provide us with a general understanding
of what to expect from Grunt and hopefully, with this sneak peak, an idea of how
Grunt's power and simplicity could be applied to our own projects.

What is Grunt?
When Ben Alman released Grunt (http://gswg.io#grunt) in March 2012, he
described it as a task-based command line build tool for JavaScript projects. Now,
with the release of Grunt version 0.4.x, the project caption is The JavaScript Task
Runner. Build tools or task runners are most commonly used for automating
repetitive tasks, though we will see that the benefits of using Grunt far exceed simple
automation.

The terms build tool and task runner essentially mean the same thing and
throughout this book, I will always use build tool, though both can be used
interchangeably. Build tools are programs with the sole purpose of executing code
to convert some source code into a final product, whether it be a complete web
application, a small JavaScript library or even a Node.js command-line tool. This
build process can be composed of any number of steps, including: style and coding
practice enforcement, compiling, file watching and automatic task execution, and
unit testing and end-to-end testing, just to name a few.

Introducing Grunt

[8]

Grunt has received huge success in the open-source community, especially with the
rise of JavaScript following the world's increasing demand for web applications. At
the time of writing this book (December 2013), Grunt is downloaded approximately
300,000 times per month (http://gswg.io#grunt-stats) and the open-source
community has published approximately 1,400 Grunt plugins in npm (the Node.js
package manager http://gswg.io#npm) and these numbers continue to rise.

Node.js (http://gswg.io#node) is a platform for writing JavaScript command-line
tools, which run on all major operating systems. Grunt is one such command-line
tool. Once installed, we can execute grunt on the command line. This tells Grunt to
look for a Gruntfile.js file. This choice of name refers to the build tool Make, and
its Makefile. This file is the entry point to our build, which can define tasks inline,
load tasks from external files, load tasks from external modules, and configure these
tasks and much more.

Let's briefly review a simple example of a Gruntfile.js file so we can get a glimpse
of what is to come:

//Code example 01-minify
module.exports = function(grunt) {

 // Load the plugin that provides the "uglify" task.
 grunt.loadNpmTasks('grunt-contrib-uglify');

 // Project configuration.
 grunt.initConfig({
 uglify: {
 target1: {
 src: 'foo.js',
 dest: 'foo.min.js'
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['uglify']);
};

In this short example, we are using the uglify plugin to create a minified (or
compressed) version of our main project file—foo.js in this case. First, we load the
plugin with loadNpmTasks. Next, we'll configure it by passing a configuration object
to initConfig. Finally, we'll define a default task, which in this example, is simply
an alias to the uglify task.

Chapter 1

[9]

Now, we can run the default task with grunt and we should see the
following output:

$ grunt
Running "uglify:target1" (uglify) task
File "foo.min.js" created.
Done, without errors.

We've just created and successfully run our first Grunt build!

Why use Grunt?
In the past five years, due to the evolution of Web browsers, focus has shifted
from Desktop applications to Web applications. More companies are realizing
that the web is a perfect platform to create tools to save people time and money
by providing quick and easy access to their service. Whether it is ordering pizza
or Internet banking, web applications are fast becoming the platform of choice for
the modern business. These modern companies know that, if they were to build an
application for a specific platform, like the iOS or Windows operating systems, they
would be inherently restricting their audience, as each operating system has its own
percentage of the total user base. They've realized that in order to reach everyone,
they need a ubiquitous platform that exists in all operating systems. This platform
is the Web. So, if everyone with Internet access has a browser, then by targeting the
browser as our platform, our potential user base becomes everyone on the Internet.

The Google product line is a prime example of a business successfully utilizing the
browser platform. This product line includes: Google Search, YouTube, Gmail, Google
Drive, Google Docs, Google Calendar, and Google Maps. However, providing a rich
user experience comes with a cost. These applications are tremendously more complex
than a traditional website made with jQuery animated menus.

Complex JavaScript Web Applications require considerable design and planning.
It is quite common for the client-side (or browser) JavaScript code to be more
complicated than the server-side code. With this in mind, we need to ensure our
code base is manageable and maintainable. The key to code manageability and
maintainability is to logically structure our project and to keep our code DRY. Structuring
includes the file and directory structure as well as the code structure (that is HTML,
CSS, and JavaScript structure). Maintaining a logical directory structure provides
predefined locations for all types of files. This allows us to always know where to
put our code, which is very important for rapid development. DRY stands for Don't
Repeat Yourself (http://gswg.io#dry). Hence, to keep your code DRY is to write
code where there is little or no repetition and we embrace the idea of a "single source
of truth". Similarly, we want to avoid repetition surrounding our build process. As
we'll see throughout this book, Grunt is a great tool for achieving these goals.

Introducing Grunt

[10]

Benefits of Grunt
Many people are of the opinion that the benefit of using Grunt (or any build tool for
that matter) is to possibly save time, and often this tradeoff—of learning time versus
actual development time is deemed too risky, which then leads to the programmer
staying safe with the manual method. This perception is misguided. The added
efficiency is only one of benefits of using Grunt, the other main benefits include:
build consistency, increased effectiveness, community utilization, and task flexibility.

Efficiency
Hypothetically, let's say it takes us 2 minutes per build and we need to build (and
run the tests) numerous times every hour, resulting in approximately 50 builds per
day. With this schedule, it costs us approximately 100 minutes per day in order to
perform the monotonous task of manual running various sets of command-line
tools in the right sequence. Now, if learning a new build tool like Grunt takes us 2-3
hours of research and 1-2 hours to implement the existing build process as a Grunt
build, then this cost will be recovered in only a week of work. Considering that most
programmers will be using their trade for years to come, the decision is simple—use
a build tool as it is well worth the time investment.

With this in mind, we can see the time spent to learn a new tool like Grunt is
negligible in comparison with the time saved across the entire span of all projects in
which that tool is used.

Consistency
The human propensity for error is an unavoidable hurdle programmers face when
carrying out a manual build process. This propensity is further increased if a given
build process involves each command being manually typed out instead of saving
them in some kind of script for easier execution. Even with an array of scripts,
problems can still arise if someone forgets to execute one, or if the special script
required for a special situation is forgotten.

Using Grunt provides us with the ability to implement our build logic inside the
build process. Once the build has been set up and confirmed, this effectively removes
the possibility for human error from the equation entirely. This ability also helps
newcomers contribute to your projects by allowing them to quickly get started on the
code base as opposed to getting bogged down trying to understand the build.

Also, as a result of the great effort behind the Node.js project, we can also run
our encapsulated build process across all major operating systems. This allows
developers from all walks of life to use and enhance a common build process.

Chapter 1

[11]

Effectiveness
As well as saving time from doing less, we also save time by staying in the zone.
For many programmers, it often takes us some time to gather momentum in order
to bring our brains into gear. By automating the build process, we multi-task less,
allowing us to keep our minds focused on the current task at hand.

Community
A common problem for many build tools is the lack of community support. Most
build tool have plugins for many common build processes, but as soon as we want to
perform a task that is too niche or too advanced, we are likely to be forced to restart
from scratch.

At the time of writing, npm (the Node.js Package Manager) contained approximately
50,000 modules and, as mentioned above, approximately 1,900 of these are Grunt
plugins. These plugins cover a wide array of build problems and are available
now via the public npm repository, which provides a purposefully simple means
to publish new modules to the repository. As a result of this simplicity, anyone
may share their Grunt plugin with the rest of the world with a single npm publish
command. This concept makes it easy for programmers of every skill level to
share their work. Allowing everyone to build upon everyone else's work creates
a synergistic community, where the more people contribute, the more valuable
the community becomes, which in turn provides further incentive for people to
contribute. So, by using Grunt, we tap into the power of the Node.js community.
This fact alone should be enough to convince us to use Grunt.

GitHub (http://gswg.io#github) is another valuable community tool that
greatly benefits Grunt. As of June 2013, JavaScript code makes up 21 percent of
code on GitHub making it the most popular programming language on GitHub.
However, this fact alone is not the only reason to host your project on GitHub.
The Git (http://gswg.io#git) Distributed Version Control System (DVCS)
provides the ability to branch and merge code, and the flexibility of both local and
remote repositories. This makes it the superior choice for open-source collaboration,
compared to other (non-distributed) VCS tools such as SVN or TFS.

With the combination of GitHub (being a great JavaScript open-source collaboration
platform) and npm (being so widespread and simple to use) the Grunt team provides
Grunt users with the perfect environment for an open-source community to thrive.

We'll cover more on npm in the Chapter 2, Setting Up Grunt and contributing to
open-source projects in Chapter 5, Advanced Grunt.

Introducing Grunt

[12]

Flexibility
Another common problem for many build tools is the level of prior knowledge
required to write your own task. Often, they also require varying levels of setup
before you can start actually writing code. A Grunt task is essentially just a
JavaScript function, and that's it. Tasks can be defined with various levels of
complexity to suit the needs of build process. However, remaining at the root of all
tasks is the idea of one task being one function—for example, this Gruntfile.js
defines a simple task called foo:

//Code example 02-simple-task
module.exports = function(grunt) {

 grunt.registerTask('foo', function() {
 grunt.log.writeln('foo is running...');
 });

};

Our new foo task is runnable with the command: grunt foo. When executed,
we see:

$ grunt foo
Running "foo" task
foo is running...

We'll learn more about Grunt tasks in Chapter 3, Using Grunt.

The arguments for using various build tools generally stem from two conflicting
sides: the simplicity of configuration or the power of scripting. With Grunt however,
we get the best of both worlds. We are able to easily create arbitrary tasks as well as
define verbose configuration. The following Gruntfile.js file demonstrates this:

//Code example 03-simple-config
module.exports = function(grunt) {

 grunt.initConfig({
 bar: {
 foo: 42
 }
 });

 grunt.registerTask('bar', function() {
 var bar = grunt.config.get('bar');
 var bazz = bar.foo + 7;

Chapter 1

[13]

 grunt.log.writeln("Bazz is " + bazz);
 });
};

In this example, we are first initializing the configuration with an object. Then, we
are registering a simple task, which uses this configuration. Note, instead of using
grunt.initConfig(…) in the preceding code, we could also use grunt.config.
set('bar', { foo: 42 }); to achieve the same result.

When we run this example with grunt bar, we should see:

$ grunt bar
Running "bar" task
Bazz is 49

This example demonstrates the creation of a simple task using minimal
configuration. Imagine we have created a task which parses JavaScript source code
into a tree of syntax nodes, traverses these nodes, performing arbitrary transforms
on them (like shortening variable names) and writes them back out to a file, with the
ultimate effect of compressing our source code. This is exactly what the UglifyJS
library does, with many configuration options to customize its operation. We'll cover
more on JavaScript Minification in the next section.

Real-world use cases
Hearing about the benefits of Grunt is all well and good, but what about actual use
cases that the average web developer will face every day in the real world? In this
section, we'll take an eagle-eye view of the most common use cases for Grunt.

These examples make use of configuration targets. Essentially, targets allow us to
define multiple configurations for a task. We'll cover more on configuration targets
in Chapter 2, Setting Up Grunt.

Static analysis or Linting
In programming, the term linting is the process of finding probable bugs and/or style
errors. Linting is more popular in dynamically typed languages as type errors may
only be resolved at runtime. Douglas Crockford popularized JavaScript linting in
2011 with the release of his popular tool, JSLint.

JSLint is a JavaScript library, so it can be run in Node.js or in a browser. JSLint is a set
of predetermined rules that enforce correct JavaScript coding practices. Some of these
rules may be optionally turned on and off, however, many cannot be changed. A
complete list of JSLint rules can be found at http://gswg.io#jslint-options.

Introducing Grunt

[14]

This leads us to JSHint. Due to Douglas Crockford's coding style being too strict
for some, Anton Kovalyov has forked the JSLint project to create a similar, yet more
lenient version, which he aptly named: JSHint.

I am a fan of Douglas Crockford and his book, JavaScript—The Good Parts
(http://gswg.io#the-good-parts), but like Anton, I prefer a more merciful
linter, so in this example below, we will use the Grunt plugin for JSHint:
http://gswg.io#grunt-contrib-jshint.

//Code example 04-linting
//Gruntfile.js
module.exports = function(grunt) {

 // Load the plugin that provides the "jshint" task.
 grunt.loadNpmTasks('grunt-contrib-jshint');

 // Project configuration.
 grunt.initConfig({
 jshint: {
 options: {
 curly: true,
 eqeqeq: true
 },
 target1: ['Gruntfile.js', 'src/**/*.js']
 }
 });

 // Define the default task
 grunt.registerTask('default', ['jshint']);

};

//src/foo.js
if(7 == "7") alert(42);

In the preceding code, we first load the jshint task. We then configure JSHint to run
on the Gruntfile.js file itself, as well as all of the .js files in the src directory and
its subdirectories (which is src/foo.js in this case). We also set two JSHint options:
curly, which ensures that curly braces are always used in if, for, and while
statements; and eqeqeq, which ensures that strict equality === is always used.

JSHint has retained most of the optional rules from JSLint and it has also added
many more. These rules can be found at: http://gswg.io#jshint-options.

Chapter 1

[15]

Finally, we can run the jshint task with grunt, and we should see the following:

$ grunt
Running "jshint:target1" (jshint) task
Linting src/foo.js...ERROR
[L1:C6] W116: Expected '===' and instead saw '=='.
if(7 == "7") alert(42);
Linting src/foo.js...ERROR
[L1:C14] W116: Expected '{' and instead saw 'alert'.
if(7 == "7") alert(42);

Warning: Task "jshint:target1" failed. Use --force to continue.

Aborted due to warnings.

The result shows that JSHint found two warnings in the src/foo.js file on:

• Line 1, column 6—since we've enforced the use of strict equality, == is not
allowed, so it must be changed to ===.

• Line 1, column 14—since we've enforced the use of the curly braces, the if
statement body must explicitly use curly braces.

Once we've fixed these two issues as follows:

if(7 === "7") {
 alert(42);
}

We can then re-run grunt and we should see:

$ grunt
Running "jshint:target1" (jshint) task
>> 2 files lint free.

Done, without errors.

Notice that two files were reported to be lint free. The second file was the
Gruntfile.js file, and if we review this file, we see it does not break either of the
two rules we enabled.

In summary, JSHint is very useful as the first step of our Grunt build as it can
help catch simple errors, such as unused variables or accidental assignments in if
statements. Also, by enforcing particular coding standards on the project's code base,
it helps maintain code readability, as all code entering the shared repository will be
normalized to a predetermined coding style.

Introducing Grunt

[16]

Transcompilation
Transcompiling—also known as source-to-source compilation and often abbreviated
to transpiling—is the process of converting the source code of one language to the
source code of another. Within the web development community in recent years,
there has been an increase in the use of transcompile languages such as Haml, Jade,
Sass, LESS, Stylus, CoffeeScript, Dart, TypeScript, and more.

The idea of transcompiling has been around since the 1980s. A popular example
was an original C++ compiler (Cfront) by Bjarne Stroustrup, which converted C++
(known as C with Classes at the time) to C.

CoffeeScript
CoffeeScript (http://gswg.io#coffeescript) is the most popular transpile
language for JavaScript. It was released in 2009 by Jeremy Ashkenas and is now the
10th most popular language on GitHub with 3 percent of the all code in public Git
repositories. Due to this popularity, a particularly common use case for the modern
web developer is to compile CoffeeScript to JavaScript. This can be easily achieved
with the Grunt plugin http://gswg.io#grunt-contrib-coffee.

In the following example, we'll use the grunt-contrib-coffee plugin to compile all
of our CoffeeScript files:

//Code example 05-coffeescript
module.exports = function(grunt) {

 // Load the plugin that provides the "coffee" task.
 grunt.loadNpmTasks('grunt-contrib-coffee');

 // Project configuration.
 grunt.initConfig({
 coffee: {
 target1: {
 expand: true,
 flatten: true,
 cwd: 'src/',
 src: ['*.coffee'],
 dest: 'build/',
 ext: '.js'
 },
 target2: {
 files: {
 'build/bazz.js': 'src/*.coffee'
 }

Chapter 1

[17]

 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['coffee']);
};

Inside the configuration, the coffee object has two properties; each of which defines
a target. For instance, we might wish to have one target to compile the application
source and another target to compile the unit test source. We'll cover more on tasks,
multitasks, and targets in Chapter 2, Setting Up Grunt.

In this case, the target1 target will compile each .coffee file in the src directory
to a corresponding output file in the build directory. We can execute this target
explicitly with grunt coffee:target1, which should produce the result:

$ grunt coffee:target1
Running "coffee:target1" (coffee) task
File build/bar.js created.
File build/foo.js created.

Done, without errors.

Next, target2 will compile and combine each of the .coffee files in the src
directory to a single file in the build directory called bazz.js. We can execute this
target with grunt coffee:target2, which should produce the result:

grunt coffee:target2
Running "coffee:target2" (coffee) task
File build/bazz.js created.

Done, without errors.

Combining multiple files into one has advantages and disadvantages, which we shall
review in the next section Minification.

Jade
Jade (http://gswg.io#jade) compiles to HTML and, as with CoffeeScript to
JavaScript, Jade has the semantics of HTML, though different syntax. TJ Holowaychuk,
an extremely prolific open-source contributor, released Jade in July 2010.
More information on the Grunt plugin for Jade can be found at
http://gswg.io#grunt-contrib-jade.

Introducing Grunt

[18]

We'll also notice the following example Gruntfile.js file is quite similar to the
previous CoffeeScript example. As we will see with many Grunt plugins, both these
examples define some kind of transform from one set of source files to another set of
destination files:

//Code example 06-jade
module.exports = function(grunt) {

 // Load the plugin that provides the "jade" task.
 grunt.loadNpmTasks('grunt-contrib-jade');

 // Project configuration.
 grunt.initConfig({
 jade: {
 target1: {
 files: {
 "build/foo.html": "src/foo.jade",
 "build/bar.html": "src/bar.jade"
 }
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['jade']);
};

In this example, target1 will do a one-to-one compilation, where src/foo.jade
and src/bar.jade will be compiled into build/foo.html and build/bar.html
respectively. As we have set the default task to be the jade task, we can run all of
jade's targets with a simple grunt command, which should produce:

$ grunt
Running "jade:target1" (jade) task
File "build/foo.html" created.
File "build/bar.html" created.

Done, without errors.

Chapter 1

[19]

Stylus
Stylus (http://gswg.io#stylus) compiles to CSS, and as before, it has the
semantics of CSS though different syntax. TJ Holowaychuk also created Stylus,
which he officially released in February 2011. More information on the Stylus Grunt
plugin can be found at http://gswg.io#grunt-contrib-stylus. Similarly to
the examples above, the following example Gruntfile.js file contains only slight
differences. Instead of jade, we're configuring stylus, and instead of transpiling
.jade to .html, we're transpiling .styl to .css:

//Code example 07-stylus
module.exports = function(grunt) {

 // Load the plugin that provides the "stylus" task.
 grunt.loadNpmTasks('grunt-contrib-stylus');

 // Project configuration.
 grunt.initConfig({
 stylus: {
 target1: {
 files: {
 "build/foo.css": "src/foo.styl"
 }
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['stylus']);
};

When we run grunt, we should see the following:

$ grunt
Running "stylus:target1" (stylus) task
File build/foo.css created.

Done, without errors.

Introducing Grunt

[20]

Haml, Sass, and LESS
Grunt plugins that transpile code are very similar, as previously seen with
CoffeeScript, Jade and Stylus. In some way or another, they define a set of input files
and a set of output files, and also provide options to vary the compilation. For the
sake of brevity, I won't go through each one, but instead I'll provide links to each
preprocessor (transcompiler tool) and its respective Grunt plugins:

• Haml—http://gswg.io#haml—gswg.io#grunt-haml

• Sass—http://gswg.io#sass—gswg.io#grunt-contrib-sass

• LESS—http://gswg.io#less—gswg.io#grunt-contrib-less

At the end of the day, the purpose of using transcompile languages is to improve our
development workflow, not to hinder it. If using these tools requires a lengthy setup
for each, then the more tools we add to our belt, the longer it'll take our team to get
up and running. With Grunt, we add each plugin to our package.json and with one
npm install command, we have all the plugins we need and can start transpiling
in minutes!

Minification
As web applications increase in complexity, they also increase in size. They contain
more HTML, more CSS, more images, and more JavaScript. To provide some context,
the uncompressed development version of the popular JavaScript library, jQuery
(v1.9.1), has reached a whopping 292 KB. With the shift to mobile, our users are
often on unreliable connections and loading this uncompressed jQuery file could
easily take more than 5 seconds. This is only one file, however, often websites can
be as large as 2-3MB causing load times to skyrocket. A blog post from KISSmetrics
(http://gswg.io#loading-time-study) reveals the following, using data from
gomez.com and akamai.com:

73% of mobile Internet users say they have encountered a website that was too slow
to load.

51% of mobile Internet users say they have encountered a website that crashed,
froze, or received an error.

38% of mobile Internet users say they have encountered a website that wasn't
available.

47% of consumers expect a web page to load in 2 seconds or less.

40% of people abandon a website that takes more than 3 seconds to load.

Chapter 1

[21]

A 1 second delay in page response can result in a 7% reduction in conversions.

If an e-commerce site is making $100,000 per day, a 1 second page delay could
potentially cost you $2.5 million in lost sales every year.

Based on this information, it is clear we should do all we can to reduce page load
times. However, manually minifying all of our assets is time consuming, so it is
Grunt to the rescue! The Grunt team has plugins for the following common tasks:

• Minify JavaScript—http://gswg.io#grunt-contrib-uglify

• Minify CSS—http://gswg.io#grunt-contrib-cssmin

• Minify HTML—http://gswg.io#grunt-contrib-htmlmin

In the following example Gruntfile.js, we see how easy this process is. Much like
the compilation tasks above, these minification tasks are also a transformation, in
that they have file inputs and file outputs. In this example, we'll utilize the grunt-
contrib-uglify plugin, which will provide the uglify task:

 grunt.initConfig({
 uglify: {
 target1: {
 src: 'foo.js',
 dest: 'foo.min.js'
 }
 }
 });

This is only a portion of Code example 01-minify, the complete snippet can be
found in the code examples (http://gswg.io#examples) or by returning to the start
of this chapter. As with the uglify task, the cssmin and htmlmin tasks also have
options to customize the way our code is compressed. See the corresponding GitHub
project pages for more information.

If you're using Jade to construct your HTML, then
you can use its built-in compression option by setting
pretty to false.

Concatenation
As with minification, concatenation (or joining) also helps reduce page load time. As
per the HTTP 1.1 specification, browsers can only request two files at once (see HTTP
1.1 Pipelining). Although newer browsers have broken this rule and will attempt to
load up to six files at once, we will see it is still the cause of slower page load times.

Introducing Grunt

[22]

For example, if we open Chrome Developer Tools inside Google Chrome, view the
Network tab, then visit the cnn.com website, we see approximately 120 file requests,
40 of which are loading from the cnn.com domain. Hence, even with six files being
loaded at once, our browsers still must wait until a slot opens up before they can
start downloading the next set of files.

Also, if there are more files to load over a longer period of time, there will be a higher
chance of TCP connection dropouts, resulting in even longer waits. This is due to the
browser being forced to re-establish a connection with the server.

When building a large Web Application, JavaScript will be used heavily. Often,
without the use of concatenation, developers decide not to segregate their code into
discrete modular files, as they would then be required to enter a corresponding script
tag in the HTML. If we know all of our files will be joined at build-time, we will be
more liberal with creation of new files, which in turn will guide us toward a more
logical separation of application scope.

Therefore, by concatenating assets of similar type together, we can reduce our asset
count, thereby increasing our browser's asset loading capability.

Although concatenation was solved decades ago with the Unix command: cat,
we won't use cat in this example, instead, we'll use the Grunt plugin:
http://gswg.io#grunt-contrib-concat. This example Gruntfile.js file
demonstrates use of the concat task, which we'll see is very similar to the tasks
above as it is also a fairly simple transformation:

//Code example 08-concatenate
module.exports = function(grunt) {

 // Load the plugin that provides the "concat" task.
 grunt.loadNpmTasks('grunt-contrib-concat');

 // Project configuration.
 grunt.initConfig({
 concat: {
 target1: {
 files: {
 "build/abc.js": ["src/a.js", "src/b.js", "src/c.js"]
 }
 }
 }
 });

 // Define the default task

Chapter 1

[23]

 grunt.registerTask('default', ['concat']);
};

As usual, we will run it with grunt and should see the following:

$ grunt
Running "concat:target1" (concat) task
File "build/abc.js" created.

Done, without errors.

Just like that, our three source files have been combined into one, in the order
we specified.

Deployment
Deployment is one of the lengthier tasks when it comes to releasing the final product.
Generally, it involves logging into a remote server, manually finding the correct
files to copy, restarting the server and praying we didn't forget anything. There may
also be other steps involved which could further complicate this process, such as
performing a backup of the current version or modifying a remote configuration
file. Each one of these steps can be catered for with Grunt, either with plugins,
which provide useful tasks, or with our own custom tasks where we may wield the
complete power of Node.js.

As mentioned in the first section, we can use Grunt to script these types of processes,
thus removing the element of human error. Human error is probably the most
dangerous at the deployment step because it can easily result in server down time,
which will often result in monetary losses.

In the following subsections, we'll cover three common methods of deploying files to
our production servers: FTP, SFTP, and S3. We won't however, cover the creation of
custom tasks and plugins in this section, as we will go through these topics in depth
in Chapter 3, Using Grunt.

FTP
The File Transfer Protocol specification was released in 1980. Because of FTP's
maturity and supremacy, FTP became the standard way to transfer files across the
Internet. Since FTP operates over a TCP connection, and given the fact that
Node.js excels in building fast network applications, an FTP client has been
implemented in JavaScript in approximately 1000 lines, which is tiny! It can be
found at http://gswg.io#jsftp.

Introducing Grunt

[24]

A Grunt plugin has been made using this implementation, and this plugin can be
found at http://gswg.io#grunt-ftp-deploy. In the following example, we'll use
this plugin along with a local FTP server:

//Code example 09-ftp
module.exports = function(grunt) {

 // Load the plugin that provides the "ftp-deploy" task.
 grunt.loadNpmTasks('grunt-ftp-deploy');

 // Project configuration.
 grunt.initConfig({
 'ftp-deploy': {
 target1: {
 auth: {
 host: 'localhost',
 port: 21,
 authKey: 'my-key'
 },
 src: 'build',
 dest: 'build'
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['ftp-deploy']);
};

When the ftp-deploy task is run, it looks for an .ftppass file, which contains sets
of usernames and passwords. When placing a Grunt environment inside a version
control system, we must be wary of unauthorized access to login credentials.
Therefore, it is good practice to place these credentials in an external file, which is not
under version control. We could also use system environment variables to achieve
the same effect.

Our Gruntfile.js above has set the key option to "my-key", this tells ftp-deploy
to look for this property inside our .ftppass file (which is in JSON format). So, we
should create a .ftppass file like:

{
 "my-key": {
 "username": "john",
 "password": "smith"
 }
}

Chapter 1

[25]

For testing purposes, there are free FTP servers available: PureFTPd
http://gswg.io#pureftpd (Mac OS X) and FileZilla Server
http://gswg.io#filezilla-server (Windows).

Once we have an FTP server ready, with the correct username and password, we are
ready to transfer. Running this example should produce the following:

$ grunt
Running "ftp-deploy:target1" (ftp-deploy) task
>> New remote folder created /build/
>> Uploaded file: foo.js to: /
>> FTP upload done!

FTP is widespread and commonly supported; however, as technology and software
improve, as legacy systems get deprecated, and as data encryption becomes a
negligible computational cost, the use of unencrypted protocols like FTP is in
decline—which segues us to SFTP.

SFTP
The Secure File Transfer Protocol is often incorrectly assumed to be a normal FTP
connection tunneled through an SSH (Secure Shell) connection. However, SFTP is a
new file transfer protocol (though it does use SSH).

In this example, we are copying three HTML files from our local build directory to
the remote tmp directory. Again, to avoid placing credentials inside build, we store
our username and password inside our credentials.json file. This example uses
the Grunt plugin http://gswg.io#grunt-ssh. This plugin actually provides two
tasks: sftp and sshexec, however, in this example we'll only be using the sftp task:

//Code example 10-sftp
module.exports = function(grunt) {

 // Load the plugin that provides the "sftp" task.
 grunt.loadNpmTasks('grunt-ssh');

 // Project configuration.
 grunt.initConfig({

 credentials: grunt.file.readJSON('credentials.json'),

 sftp: {
 options: {
 host: 'localhost',

Introducing Grunt

[26]

 username: '<%= credentials.username %>',
 password: '<%= credentials.password %>',
 path: '/tmp/',
 srcBasePath: 'build/'
 },
 target1: {
 src: 'build/{foo,bar,bazz}.html'
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['sftp']);
};

At the top of our configuration, we created a new credentials property to store
the result of reading our credentials.json file. Using Grunt templates, which we
cover in Chapter 2, Setting Up Grunt, we can list the path to the property we wish to
substitute in. Once we have prepared our credentials.json file, we can
execute grunt:

$ grunt
Running "sftp:target1" (sftp) task

Done, without errors.

We notice the sftp task didn't display any detailed information. However, if we run
Grunt with the verbose flag: grunt -v we should see this snippet at the end of
our output:

Connection :: connect
copying build/bar.html to /tmp/bar.html
copied build/bar.html to /tmp/bar.html
copying build/bazz.html to /tmp/bazz.html
copied build/bazz.html to /tmp/bazz.html
copying build/foo.html to /tmp/foo.html
copied build/foo.html to /tmp/foo.html
Connection :: end
Connection :: close

Done, without errors.

This output clearly conveys that we have indeed successfully copied our three
HTML files from our local directory to the remote directory.

Chapter 1

[27]

S3
Amazon Web Service's Simple Storage Service is not a deployment method (or
protocol) like FTP and SFTP, but rather a service. Nevertheless, from a deployment
perspective they are quite similar as they all require some configuration, including
destination and authentication information.

Hosting Web Applications in the Amazon Cloud has grown quite popular in recent
years. The relatively low prices of S3 make it a good choice for static file hosting,
especially as running your own servers can introduce many unexpected costs.
AWS has released a Node.js client library for many of its services. Since there was
no Grunt plugins utilizing this library at the time, I decided to make one. So, in
the following example, we are using http://gswg.io#grunt-aws. Below, we are
attempting to upload all of the files inside the build directory into the root of the
chosen bucket:

 //Code example 11-aws
 grunt.initConfig({
 aws: grunt.file.readJSON("credentials.json"),
 s3: {
 options: {
 accessKeyId: "<%= aws.accessKeyId %>",
 secretAccessKey: "<%= aws.secretAccessKey %>",
 bucket: "..."
 },
 //upload all files within build/ to output/
 build: {
 cwd: "build/",
 src: "**"
 }
 }
 });

Again, similar to the SFTP, we are using an external credentials.json file to house
our valuable information. So, before we can run this example, we first need to create
a credentials.json file, which looks like:

{
 "accessKeyId": "AKIAIMK...",
 "secretAccessKey": "bt5ozy7nP9Fl9..."
}

Introducing Grunt

[28]

Next, we set the bucket option to the name of bucket we wish to upload to, then we
can go ahead and execute grunt:

$ grunt
Running "s3:build" (s3) task
Retrieving list of existing objects...
>> Put 'foo.html'
>> Put 'bar.js'
>> Put 2 files

Done, without errors.

Summary
In this chapter, we have learnt Grunt is an easy to use JavaScript build tool, which
has the potential to greatly improve the development cycle of the typical front-end
developer. We have covered many common build problems in this chapter and, by
combining these examples, we see we can quite easily make use of various premade
Grunt plugins to vastly simplify previously complex build processes.

In the next chapter, we will review the steps required to install Grunt and its only
dependency—Node.js, and also the various methods of configuring Grunt.

Setting Up Grunt

In this chapter, we will go over the steps required to get Grunt up and running. We
begin with an introduction into Node.js and npm, as they are the key technologies
used to build the foundations upon which Grunt stands. We review Node.js
modules and how they relate to Grunt, then cover the basics of a Grunt environment,
including package.json and Gruntfile.js files. Once we are set up, we'll move
onto configuring Grunt. We will look into the various methods and strategies that
make Grunt best convey our build.

Installation
In this section, we cover how to install and use Grunt's key components, Node.js and
npm. We will review a brief introduction into each, as well as their core concepts.
Subsequently, we will cover the simple installation of Grunt itself.

Node.js
Although this book primarily focuses on Grunt, we will also dip our toes into the
world of Node.js (http://gswg.io#node) fairly regularly. Given Grunt is written
as a Node.js module and Grunt tasks and plugins are also Node.js modules, it is
important that we understand the basics of Node.js and its package manager, npm
(http://gswg.io#npm).

Ryan Dahl started the Node.js project in early 2009 out of frustration with the
current state of web servers in the industry. At the time, web servers written in Ruby
(Mongrel and then Thin) were popular due to the Ruby on Rails framework. Ryan
realized that writing a really fast web server in Ruby just wasn't possible. Ruby's
inefficiency was actually caused by the language's blocking nature, which meant – in
context of a web server – that it could not effectively use the hardware available to
it. A program is said to be blocking when it causes the CPU to be put on pause while
it waits on a given Input/Output (I/O) task such as reading from the hard drive or
making a network request to a web server.

Setting Up Grunt

[30]

Blocking is inherent in many programming languages. JavaScript and hence
Node.js can avoid the blocking problem through its evented execution model. This
model allows JavaScript programs to execute code asynchronously. That is, I/O tasks
within JavaScript programs can be written so they don't block, and therefore achieve
a high degree of efficiency.

The following table from Ryan Dahl's original Node.js presentation
(http://gswg.io#node-presentation) in late 2009 shows the main types of I/O
operations and using the average access time, the corresponding number of CPU
cycles that could have been used during each I/O operation:

I/O operation CPU cycles
L1 3 cycles
L2 14 cycles
RAM 250 cycles
Disk 41,000,000 cycles
Network 240,000,000 cycles

Based on this table, by blocking the CPU on any disk or network access, we are
introducing large inefficiencies into our programs; so using Node.js is a huge step
forward when building any application dealing with system I/O – which is most
applications today.

On a general note, learning how the language works, where it excels and where
it doesn't, and why JavaScript isn't the "toy" language that many have previously
labeled it, will be of great value when traversing the JavaScript landscape. For a list
of useful JavaScript resources, see Chapter 5, Advanced Grunt.

To install Node.js, first we visit the Node.js download page:
http://gswg.io#node-download. Once there, you should see the following
table of download options:

Chapter 2

[31]

At the time of writing, the newest Node.js version is 0.10.22. This will most likely
change, but fear not! The download page always contains the latest stable release
of Node.js.

On Windows and Mac, the installers are the simplest way of installing Node.js.
However, some may prefer using an operating system package manager, as they
generally provide a more uniform method to install, uninstall, and most
importantly – upgrade. For instance, if you are on a Mac, using homebrew to
install Node.js is also very simple and it provides the added benefit of easy
version upgrades to new versions as they're released, with the command: brew
upgrade node. To read more on installing Node.js via a package manager,
see http://gswg.io#node-with-package-manager. This page contains installation
guides for Mac, Windows, Ubuntu, and various other Linux distributions. We'll
learn more about homebrew in Chapter 5, Advanced Grunt, in the Development
tools section.

Now we have installed Node.js, which has npm bundled along with it; we should
have access to the node and npm executables, as they should now reside in our
system's PATH.

The following commands should print the version of each executable to the console:
node --version and npm --version, which should display the Node.js version that
you just downloaded and installed. At the time of writing, my output looks like:

$ node --version

v0.10.22

$ npm --version

1.3.14

This confirms that we have set up Node.js correctly, and we are now ready to use it!

Modules
Before we look at npm, we first need to understand the basics of the Node.js module
system. The Node.js module system is an implementation of the CommonJS
specification. CommonJS describes a simple syntax for JavaScript programs to
require (or import) other JavaScript programs into their context. This missing
feature of JavaScript greatly assists with creating modular systems by simplifying
the process of separating concerns. In Node.js, all JavaScript files can be seen as
individual modules. So, beyond this point, we'll use the terms: file and module
interchangeably. We may have also heard the term package being used in the place
of module, which can be confusing. Rest assured, however, we'll cover packages in
the next section on npm.

Setting Up Grunt

[32]

The CommonJS 1.1.1 specification can be found at http://gswg.io#commonjs. This
specification describes the use of the following variables:

• module – an object representing the module itself. The module object contains
the exports object. In the case of Node.js, it also contains meta-information,
such as id, parent, and children.

• exports – a plain JavaScript object, which may be augmented to expose
functionality to other modules. The exports object is returned as the result
of a call to require.

• require – a function is used to import modules, returning the corresponding
exports object.

In the case of Node.js, modules can be imported by filename using relative paths
or absolute paths. When using npm (which stores modules in the node_modules
directory), modules can also be imported by module name, which we'll see more
on in the next subsection. In the case of a web browser, another implementation of
CommonJS might require modules by URL.

The CommonJS specification also contains the following sample code, slightly
modified for the purpose of clarity:

//Code example 01-modules
//program.js
var inc = require('./increment').increment;
var a = 1;
console.log(inc(a));

//increment.js
var add = require('./math').add;
exports.increment = function(b) {
 return add(b, 1);
};

//math.js
exports.add = function(c, d) {
 return c + d;
};

In this example, we'll use program.js as our entry point or "main" file. Since we
know require will return the exports object of the desired file, it's quite easy
to see what it does. Starting at program.js, we can see that it calls require('./
increment'). When this require function is called, it synchronously executes the
increment.js file. The increment.js module in turn, calls require('./math').
The math.js file augments its exports object with an add function.

Chapter 2

[33]

Once the math.js file completes execution, require returns the math.js
module's exports object, thereby allowing increment.js to use the add function.
Subsequently, increment.js will complete its execution and return its exports
object to program.js. Finally, program.js uses its new inc function to increment
the variable a from 1 to 2. Now, when we run program.js with Node.js, we should
see the following result:

$ node program.js

2

The important takeaway from this example is the separation of concerns provided
by this modularity. Notice that the program.js module has no notion of the add.js
module, yet it is doing most of the work. In computer science, the idea of abstracting
functionality is not a new one; and with Node.js implementing CommonJS, it has
provided a simple way for users to write modular programs in JavaScript. We could
place this functionality in a single file, but if we were to extend math.js to include
every common math function, its size and complexity would quickly grow. By
splitting modules into submodules, we are separating the concerns of our program,
transforming it from a single large complex program into multiple small and
simple programs. The idea of many small programs working together is one of the
foundations of Node.js. This helps us steer clear of large monolithic libraries such as
jQuery v1.x.x, making their way into Node.js. Libraries of that size would be split
up into smaller modules, allowing the user to use only what they require. The
official documentation of the Node.js module system can be found at
http://gswg.io#node-modules.

npm
As previously noted, npm is the Node.js package manager. Since the release of
Node.js version 0.6.3, npm comes prepackaged with each Node.js distribution. npm
provides the means to publish Node.js packages into the npm repository under a
unique name. Subsequently, such a package may be installed by anyone who knows
this unique name. This is the essence of npm – sharing and retrieving code from a
public repository. "What is a package?" we may ask. On the npm Frequently
Asked Questions (FAQ) page (http://gswg.io#npm-what-is-a-package), we see
the following extract:

"What is a package?

A package is:

a) a folder containing a program described by a package.json file

b) a gzipped tarball containing (a)

c) a url that resolves to (b)"

Setting Up Grunt

[34]

Points d) through g) have been removed for brevity, however each definition results
in a). So ultimately, a package is any folder containing a valid package.json file.
This is the only requirement to pass as an npm package.

In the last part we learned about modules, while relating back to the CommonJS
specification. With the introduction of npm, there was a need to extend the
CommonJS definition. The following description of a module is outlined on the npm
FAQ page (http://gswg.io#npm-what-is-a-module):

"What is a module?

A module is anything that can be loaded with require() in a Node.js program.
The following things are all examples of things that can be loaded as modules:

A folder with a package.json file containing a main field.

A folder with an index.js file in it.

A JavaScript file."

So, as well as being a single JavaScript file, a module can be any folder with an
index.js file in it, and can be any folder with a package.json file containing a main
field (basically, the main field allows us to rename index.js). Notice that these two
new definitions approximately coincide with the definition of a package. A package
is folder that has a package.json file and a module can be a folder with package.
json file or an index.js file. So, in order for someone to use your package in their
program, it must be loaded with the require function, which by definition, means
your package must also be a module. This is why Node.js programs are commonly
referred to as "node modules" not "node packages" because "module" is more fitting
in most scenarios.

In the early years, soon after Node.js v0.1.8 was released, the platform started with
only the CommonJS-based module system outlined in the past section. It had no
sanctioned way to find and publish modules. Isaac Schlueter saw this gap and set out
to fill it, starting the npm project in September 2009. In early 2010, Ryan requested
Isaac to join him at Joyent to work on npm and Node.js full-time. In January 2012,
Ryan stepped down as the "gatekeeper" of the Node.js project and handed over the
reins to Isaac.

A fun fact is that many believe they bring the truth when they quote "npm is not an
acronym for the Node Package Manager" from the npm FAQ. However, Isaac was
being humorous on the day of writing and this is not actually true. As some might
say, he was "trolling".

npm has a many features, though for purposes of this book, we'll cover the two most
relevant workflows: finding modules and installing modules.

Chapter 2

[35]

Finding modules
The search feature of npm is fairly straightforward; we type the command npm
search followed by the search terms we wish to match. If we were to enter: npm
search grunt concat, npm would return all packages which match both grunt
and concat. A term is considered a match if it's contained anywhere in the title,
description, tags, or dependencies of the package descriptor, that is, the package.
json file. So, before we use Google to find modules, it's best to try npm search first,
as npm will search through metadata that does not appear on the npm website and
is hence not indexed by Google. Let's say we wanted to find a Grunt plugin that
makes use of the Unix rsync tool. We might try npm search gruntplugin rsync.
In this case we've included gruntplugin, which according to the Grunt team, is
a recommended tag for all Grunt plugins to use. We have also included rsync, to
narrow the search down to only those Grunt plugins matching rsync. This command
currently yields:

$ npm search gruntplugin rsync

NAME DESCRIPTION

grunt-rsync A Grunt task for accessing the file copying

 and syncing capabilities of the

grunt-rsync-2 Copy files to a (remote) machine with rsync.

 supports maps with target:source

Once we've found a potentially useful package, we can view its package information
with npm info <name>, so we use npm info grunt-rsync in this case. However,
in most cases, we just want to know how to use it. So, if the package has a public Git
repository and also adheres to open source best practice, it should have a README
file documenting its usage. We can open this repository page with the npm repo
<name> command. Now that we've read about the package and we've decided that it
may be what we're searching for, it is time to install it.

Installing modules
The npm install command has one purpose: to download modules from the npm
repository. When installing a module, we can either install it locally or globally.
We would choose to install a module locally if we're to use it in another module or
application, and we'd choose a global install if we wanted to use the module as a
command-line tool.

Setting Up Grunt

[36]

When we installed Node.js, a folder for npm "binaries" files was created and added
to your system's PATH. This allows npm to globally install modules by placing a
symbolic link in this directory, which points to the file specified in the package.json
file's bin field. We say "binaries" here as the term binary file generally means some
kind of compiled machine code; however, in this case, an npm binary is simply a
JavaScript file. For example, if we wanted to install the express module globally, we
would use the command: npm install -g express.

In the context of Grunt, we'll mainly be using npm install to utilize plugins locally
inside a specific Grunt environment. Let's say we are developing a jQuery plugin and
we wish to minify our source code. We can achieve this with the grunt-contrib-
uglify plugin. In order to use this plugin in our Gruntfile.js file, we must first
install it locally with the command: npm install grunt-contrib-uglify. This will
place the newly downloaded module inside the current package's node_modules
folder. To determine the current package, npm will traverse up the file directory tree
from the current working directory, looking a module descriptor – package.json.
If a package.json file is found, its containing folder will be used as the package
root directory; however, if it is not found, the npm will assume there is no package
yet and use the current directory as the package root directory. Once a package root
directory has been determined, a node_modules folder will be created (if one doesn't
already exist) and then finally, the module we're installing will be placed in there. To
help solidify this, consider the following directory structure:

//Code example 02-npm-install-directory
└── project
 ├── a
 │ └── b
 │ └── c
 │ └── important.js
 └── package.json

If we run npm install grunt-contrib-uglify from the c directory, the project
directory will be used as the package root directory, as it contains package.json.

$ cd project/a/b/c

$ npm install grunt-contrib-uglify

Once complete, the preceding command will result in the following directory
structure:

└── project
 ├── a
 │ └── b
 │ └── c
 │ └── important.js

Chapter 2

[37]

 ├── node_modules
 │ ├── grunt-contrib-uglify
 │ │ └── ...
 │ └── ...
 └── package.json

However, if we removed package.json before npm installing this same command
would instead result in the following directory structure:

└── project
 └── a
 └── b
 └── c
 ├── important.js
 └── node_modules
 ├── grunt-contrib-uglify
 │ └── ...
 └── ...

This pattern of calculating where to place the node_modules directory is compatible
with the pattern that the require function uses to find modules. When we wish to
use a newly installed module, we call the require function with the module's name
(instead of a filename). The require function will look for the node_modules folder
in the current directory and if it's not there, it will check the parent directory. It will
keep searching up the directory tree until it finds a node_modules folder or until it
reaches the root of the drive. Therefore, we can always require a module from where
it was installed, even if it was actually placed many folders up the directory tree.

Now that we've installed grunt-contrib-uglify, we can load this module's
Grunt tasks using: grunt.loadNpmTasks("grunt-contrib-uglify") within our
Gruntfile.js file. The loadNpmTasks function searches for our node_modules
folder in a similar way the require function. Once found it will look inside for the
desired module. Lastly, it will load all of the files in the module's tasks directory.
This is how a single module (a Grunt plugin) can provide multiple tasks.

Grunt
Finally, we can install Grunt! The Grunt Command-line interface (CLI) is published
as a separate module for one important reason: to allow us to work on one machine,
on multiple projects with various backward-incompatible versions of Grunt, without
concern. We can do this because the grunt-cli module searches for an instance
of Grunt (the grunt module) within the current directory or its parent directories
(again, similar to the require function).

Setting Up Grunt

[38]

This means we can pull a legacy Grunt project (v0.3.x) and run grunt on the
command line (which is actually the grunt-cli module). Then, navigate to a
different Grunt project (v0.4.x) and run grunt again; both will run seamlessly.
With this in mind, we should be able to see why we install grunt-cli globally and
grunt locally.

First, we'll install grunt-cli with the following command:

$ npm install -g grunt-cli

It should be noted that on Mac and Linux, we might receive a
permissions error when installing modules globally. To remedy
this we can prepend sudo, for example, sudo npm install
–g grunt. However, modules are able to execute arbitrary code
on installation; therefore, using sudo may be considered unsafe.
To prevent this, it's best to reinstall Node.js without using sudo.
For more information on this topic, please see this GitHub Gist
(http://gswg.io#npm-no-sudo) by Isaac Schlueter.

Next, we'll find the project in which we wish to use Grunt and we'll use the
following command:

$ cd my-project/

$ npm install grunt

Note, however that when it becomes time to set up this particular project again,
we would prefer not to have to manually remember every module we used. One
solution to this problem is to save our node_modules folder along with our project.
This might be okay in some cases, however, npm was built to house and serve
modules. In this next section, we'll see a better solution using npm, our package.
json file and the dependencies field.

Project setup
Now we have installed Node.js, npm and Grunt, we're ready to create our first Grunt
environment. Let's say we've already built a website, now we want to use Grunt
to minify our assets. In this section, we'll learn about the two required files: the
package.json file and the Gruntfile.js file, as well as a recommended directory
structure.

Chapter 2

[39]

package.json
The package.json file is a package descriptor; it is used to store all metadata about
the module, such as name, version, description, author, repository, and more. It's the
single file required to effectively use npm, therefore, the package.json file can also
be thought of as the "npm file". As the file extension would suggest, it must be in the
JavaScript Object Notation (JSON) data format. If the JSON syntax is invalid, npm
will display an error when reading this file. Using a package.json file in our project
has many benefits. These include: making it easy to reinstall our dependencies by
defining a dependencies field; letting us publish our module to npm by defining
the name and version fields, and storing common scripts related to the package by
defining the scripts object.

For a project using Grunt, the dependencies property will be the most useful feature
of the package.json file. When we run the command: npm install (without a
proceeding package name), npm will look for our package.json, parse it, then
install each module listed in the dependencies property.

Before we review an example package.json file using the dependencies property
it is important to understand how all npm packages are versioned. Tom Preston-
Werner proposed the Semantic Versioning specification (SemVer) in late 2009,
due to what he describes as "dependency hell" – a situation that arises within
large systems built with many smaller systems. The SemVer website
(http://gswg.io#semver) contains the following short summary:

"Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner,
and

3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to
the MAJOR.MINOR.PATCH format."

Although module publishers aren't required to strictly follow SemVer, npm does
require them to ensure version numbers are in the correct format and incremented at
each release.

Setting Up Grunt

[40]

The following is an exceptionally simple example of a package.json file:

//Code example 03-npm-install
{
 "dependencies": {
 "grunt": "0.4.2"
 }
}

In this case, when we execute: npm install alongside this package.json file, it is
equivalent to executing: npm install grunt@0.4.2. The @ symbol followed by the
version tells npm to install that specific version of the grunt module. Grunt is a rare
exception to rules above. Again, on to SemVer website:

"Major version zero (0.y.z) is for initial development. Anything may change at any
time. The public API should not be considered stable."

Since Grunt is currently at version 0.4.2 and also adheres to SemVer, the Grunt
team considers Grunt to still be in development, as the API has not been frozen
yet. Some disagree with this decision as Grunt is used so widely across the Web
development industry; however, this is a relatively inconsequential detail. Since
Grunt has no major version to make use of, the minor version is incremented for
backward incompatible changes. Therefore, the changes made from version 0.3.x
to 0.4.x of Grunt are incompatible. To prevent automatic upgrades of major and
minor versions, we'll use tilde-prefixed versions. The tilde symbol (~) denotes
any approximate version; this is a feature of npm, which can also been seen as an
addition to SemVer to mitigate backward incompatible changes. The tilde prefix tells
npm that it may only upgrade the given package for increments of the patch version.
For example, if we first installed version 0.3.5 of the grunt module, while also
specifying: "grunt": "latest" in our package.json file, subsequent npm installs
would yield the latest version. As previously mentioned, a change from version
0.3.5 to 0.4.2 (latest), would introduce breaking changes to our build. However, if we
instead specified the approximate version: "grunt": "~0.3.5", subsequent npm
installs would only upgrade us to a version matching 0.3.x, so currently, it would
yield version 0.3.17.

For this reason, we should always specify the exact or approximate versions, we
should never use "latest" or "*" (which means any version). To help us achieve
best practice, a convenience option was added to npm for exactly this situation.
When starting a project, and when we're installing a module for the first time, we
can use the --save option, which in addition to installing the module will also
automatically update our package.json file with the modules just installed and
their latest approximate versions.

Chapter 2

[41]

For example, if we started with an empty package.json file as follows:

{}

Then, if we executed: npm install --save grunt grunt-contrib-uglify , it
would currently update our previously empty package.json file to the following
code:

{
 "dependencies": {
 "grunt": "~0.4.2",
 "grunt-contrib-uglify": "~0.2.2"
 }
}

As displayed in this example, when installing modules from npm,
we can also include multiple module names at once npm install
module1 module2 module3.

When we use npm install, npm will retrieve the given module and then its
dependencies, and repeat this step until all dependencies have been retrieved. If
we were to publish our module with the grunt module as a dependency, other
modules, which depend on our module, would then be forced to download grunt
too. Grunt, however, is a build tool; it builds and transforms our source into a final
product. This final product is what should be published for public use. Therefore, in
this case, the grunt module is a development-only dependency, and actually belongs
in the devDependencies field of our package.json file. Luckily, there is also a
--save-dev option, which will do exactly the same thing as the --save option, but
instead of placing the dependencies listed in the dependencies field, it will use the
devDependencies field.

As we add more and more fields to our package.json file, it can be tiresome setting
it up again and we may be tempted to simply copy and paste the package.json
file into a new project. It's good practice, however, to build our own package.
json file for every project. This can be done easily with another npm feature, the
npm init command. npm init is a setup "wizard" for creating package.json files.
Once executed, npm will prompt us for each common field. This is a good habit to
get into as, in most cases, the only similar field across all your projects will be the
author field and there is an npm command for this too: npm config set init.
author.name 'Jaime Pillora'. This will set the default author for all subsequent
npm init. We especially should not copy and paste our dependencies field when
starting a new project. The time when there is no code to break is the perfect time to
upgrade to the latest version of each package.

Setting Up Grunt

[42]

In summary, when starting a new Grunt project, first we should create our package.
json file with npm init, and then we should add our dependencies (Grunt as well
as the Grunt plugins we're using) and also lock their current (and newest) version,
for example, npm install --save-dev grunt grunt-contrib-uglify.

Once complete, we should have a package.json file that looks similar to the
following one:

//Code example 04-package-json
{
 "name": "gswg-2-04-package-json",
 "version": "0.1.0",
 "repository": "https://github.com/jpillora/gswg-examples.git",
 "author": "Jaime Pillora <gswg@jpillora.com>",
 "devDependencies": {
 "grunt-contrib-uglify": "~0.2.2",
 "grunt": "~0.4.2"
 },
 "license": "MIT"
}

We can confirm that we've created a valid package.json file by
pasting its contents into this Package.json Validator tool found at
http://gswg.io#package-json-validator.

Gruntfile.js
Just as the command npm install looks for the package.json file and fails without
it, the grunt command will look for the Gruntfile.js file using a similar method
as well. Once found, Grunt will invoke this file with the grunt global object. The
Gruntfile.js file can be seen as our build initializer – it will define configuration
and set up tasks. It will not, however, contain the directive to run the build. This
happens automatically once the Gruntfile.js has finished executing. However, we
can customize what is run, and we can provide extra options via the command line,
as we will see in Chapter 3, Using Grunt.

On the getting started page on the Grunt website
(http://gswg.io#grunt-getting-started), the Grunt team describes the
following code as the Gruntfile.js file "wrapper":

module.exports = function(grunt) {
// Do grunt-related things in here
};

Chapter 2

[43]

We could view this syntax as the magic "wrapping" that all Gruntfile.js files need
in order to run; however, it is favorable to understand its purpose. If we recall our
summary of CommonJS, we'll remember that the module.exports object is returned
as the result of another module requiring it. Therefore, in this code, we're simply
providing a function with a single parameter. Grunt will then call our function with
the grunt object as the single argument. The grunt object is what we'll use to interact
with Grunt. That is, it is Grunt's Application Programming Interface (API) – it
contains the methods that have been exposed (or exported) for public use. The grunt
object contains methods for updating and retrieving configuration (grunt.config),
methods for loading and registering tasks (grunt.task), methods for reading
and writing files (grunt.file), and much more. The grunt object also contains
aliases to common functions, for example, grunt.config.init can be called via
grunt.initConfig and grunt.task.registerTask can be called via grunt.
registerTask.

Read more about the Grunt API at http://gswg.io#grunt-api.

Since Grunt is open source, when we're unsure about a particular
feature, we can always visit the repository and read the source code
at http://gswg.io#grunt-source-code. Each feature set has its
own file. For example, the grunt.config module and its methods
can be found in the lib/grunt/config.js file.

The purpose of the "wrapper" function that we provide is to initialize our Grunt
configuration for use within our tasks, and to load and group our tasks for use with
the command line.

Now that we have a package.json file and installed our modules, we've just
completed the prelude to Code example 01-minify at the beginning of this book.
There, we'll find a simple Gruntfile.js file utilizing the grunt-contrib-uglify
plugin and the expected output from executing this build. In the next section on
configuring tasks, we'll cover more complex use cases.

Directory structure
Now that we've created our package.json and Gruntfile.js files and installed our
packages, we should have the following directory structure:

//Code example 05-directory-structure
.
├── Gruntfile.js
├── package.json
└── node_modules

Setting Up Grunt

[44]

 ├── grunt
 └── grunt-contrib-uglify

As an aside, if we're placing our project in a Version Control System (VCS), we'll
need to remember to exclude the node_modules folder. For example, with Git we'd
also include a .gitignore file containing a line node_modules.

Depending on the type of project, our source files may be structured differently,
however, the common use case for Grunt is to transform our source files into our
build (or output) files. So generally, we'll include all our source files in a folder
called src and then create another folder build to house the result of this build. This
clear separation is important because the build folder can then be seen as temporary:
it may be replaced at any time with a new set of files. Therefore, it's important we do
not get our source and build files mixed up.

If we were to add a test suite to our project, we'd also have the test files in addition
to our source files. These test files exercise our build files to ensure they are
functioning as expected. Finally, once we've added our project-related files, we
should be left with a directory structure similar to the following one:

//Code example 05-directory-structure
.
├── Gruntfile.js
├── package.json
├── node_modules
│ ├── grunt
│ └── grunt-contrib-uglify
├── build
├── src
├── test
└── .gitignore

Also, by excluding the build folder from our VCS, we force all developers using this
project to execute the build. This will highlight any machine-dependent build issues
and ensure they are resolved early. Once in place, we have a trivial set-up guide to
get started on our new project. Run npm install followed by grunt.

Configuring tasks
Grunt configuration can be thought of as single JavaScript object, though, instead of
assigning values, we'll use functions provided by Grunt to get and set properties.

Chapter 2

[45]

We briefly touched on Grunt configuration in Chapter 1, Introducing Grunt,
displaying simple uses of the grunt.initConfig, grunt.config.get and grunt.
config.set functions. The grunt.initConfig function (which as mentioned earlier,
is aliased from grunt.config.init) accepts an object, which is then used as the
starting point for our configuration, whereas the grunt.config.get and grunt.
config.set functions are used to get and set individual properties. We can also use
the shorter grunt.config function, which works like jQuery getters and setters.
When called with one argument it aliases to grunt.config.get, and with two
arguments, it aliases to grunt.config.set. Each line in the following example is
functionally equivalent:

grunt.config.init({ foo: { bar: 7 }});
grunt.config.set('foo.bar', 7);
grunt.config('foo.bar', 7);

It's important to note that calls to grunt.config.init (or grunt.initConfig) will
erase all prior configuration.

Grunt has a focus on declaratively defining a build. Since we use a build tool to
improve our effectiveness, for our team and ourselves, it's important our build is
manageable and accessible. If our build tool were simply a long shell (or batch) script
of many steps, each process would be defined imperatively in sequence. Its length
would make it difficult for others (and our future selves) to understand, forcing us to
reverse engineer the steps. Whereas if our build were made up of declarative steps,
we could read it like, "I'd like to compile these CoffeeScript files into this folder
using these options". For example:

coffee: {
 compile: {
 files: {
 'build/app.js': 'src/scripts/**/*.coffee'
 },
 options: {
 bare: true
 }
 }
}

Therefore, we can view a Grunt configuration as a way to declaratively define how
we wish to run imperative Grunt tasks. This is where Grunt shines and why it has
become so popular – it helps to abstract the "how" and focuses on the "what".

Setting Up Grunt

[46]

The Grunt configuration methods may be used anywhere with access to the grunt
object, however, in most cases we will only use our configuration within tasks
and multitasks.

As described previously, Grunt tasks are just functions. For example, let's say we
have a Grunt task to check for stray console.log statements in our app.js file. This
consoleCheck task may look like:

//Code example 06-config-get-set
// tasks/console-check.js
module.exports = function(grunt) {

 grunt.registerTask('consoleCheck', function() {
 //load app.js
 var contents = grunt.file.read('./src/app.js');
 //search for console.log statements
 if(contents.indexOf('console.log(') >= 0)
 grunt.fail.warn('"console.log(" found in "app.js"');
 });

};

However, we may wish to reuse this task in another project. To assist with
reusability, we'll generalize this task to be a string checking task by allowing us to
define which file and what string to look for:

//Code example 06-config-get-set
// tasks/string-check.js
module.exports = function(grunt) {

 grunt.registerTask('stringCheck', function() {

 //fail if configuration is not provided
 grunt.config.requires('stringCheck.file');
 grunt.config.requires('stringCheck.string');

 //retrieve filename and load it
 var file = grunt.config('stringCheck.file');
 var contents = grunt.file.read(file);
 //retrieve string to search for
 var string = grunt.config('stringCheck.string');

 if(contents.indexOf(string >= 0))
 grunt.fail.warn('"' + string + '" found in "' + file + '"');
 });

};

Chapter 2

[47]

First, in our new stringCheck task, we're using grunt.config.requires to ensure
our configuration exists, next we're retrieving this configuration, and finally we'll
search for the string and display the result. We can now configure this task to
perform its original purpose by providing the following configuration:

//Code example 06-config-get-set
// Gruntfile.js
grunt.initConfig({
 stringCheck: {
 file: './src/app.js',
 string: 'console.log('
 }
});

When running this example with console.log(in our app.js file, we should see
the following output:

$ grunt
Running "stringCheck" task
Warning: "console.log(" found in "./src/app.js"
Use --force to continue.

Aborted due to warnings.

On the last line of our output, we see that Grunt was aborted due to warnings.
Since we used the grunt.fail.warn function in our task, we see the hint to use
the --force flag to continue; however, if we were to use the grunt.fail.fatal
function, we would not be able to ignore our new task until we remove the offending
string. See the code examples to view the runnable version.

Also note this is a naïve approach to checking source code. For instance, this task
would incorrectly fail when our string was commented out. To resolve this issue,
we would need to use a JavaScript parser to extract the code's Abstract Syntax Tree
(AST), and then search this tree for syntax of our choosing.

Configuring multitasks
Continuing with our string checker task, we will most likely want to check more
than one file. Instead of the file string, we may initially consider using a files array;
however, what if we wanted to check for numerous strings in a single file? Should
we also convert the string property into an array? And what if we only wanted to
look for certain strings in certain files? Using arrays would not suffice.

Setting Up Grunt

[48]

Enter multitasks. Multitasks allow us to solve the hypothetical problems outlined
previously using configuration targets. Targets provide us with the means to
configure multiple runs of a single task. If we were to convert our string checker task
into a multitask, its configuration might look like:

grunt.initConfig({
 stringCheck: {
 target1: {
 file: './src/app.js',
 string: 'console.log('
 },
 target2: {
 file: './src/util.js',
 string: 'eval('
 }
 }
});

We may recall similar configurations from Chapter 1, Introducing Grunt, code
examples, which also use target1 and target2. These generic names are used on
purpose to reinforce the notion that target names may be arbitrarily set. We should
therefore devise target names that improve the readability of our build. Many
examples on the Internet display task names, such as dist (short for distribution),
build, and compile. Although these might describe the target well, for a Grunt
newcomer, it can be hard to discern which portions of the configuration must be
static and which can be dynamic. For example, in the previous snippet of code, we
could have used app and util instead of target1 and target2. These logical names
would improve the usability of our build by allowing us to use readable
commands like:

$ grunt stringCheck:app

$ grunt stringCheck:util

In Chapter 3, Using Grunt, we'll learn more on running and creating our
own multitasks.

Configuring options
Defining options to customize a task is quite common; hence, both tasks and
multitasks have their function context set to the Task object, which has an options
function available. When called, it looks for the task's configuration by name and
then looks for the options object. For example:

grunt.initConfig({
 myTask: {

Chapter 2

[49]

 options: {
 bar: 7
 },
 foo: 42
 }
});

grunt.registerTask('myTask', function() {
 this.options(); // { bar:7 }
});

This feature is most useful in multitasks as we are able to define a task-wide options
object, which may be overridden by our target-specific options. For example:

grunt.initConfig({
 myMultiTask: {
 options: {
 foo: 42,
 bar: 7
 },
 target1: {
 },
 target2: {
 options: {
 bar: 8
 }
 }
 }
});

As target1 does not have an options object defined, retrieving its options will
yield: { foo:42, bar:7 }. However, when we retrieve target2 options, its bar
option will override the task options and the resulting object will be: { foo:42,
bar:8 }. We will cover more on the Task object in Chapter 3, Using Grunt.

Configuring files
A vast majority of Grunt tasks will perform some kind of file operation. To cater
for this, Grunt uses a predefined object structure along with file "globbing" (or
wildcard file selection) to produce a succinct API for describing files. While running
a multitask, its configuration will be checked for this file pattern and it will attempt
to match the files it describes with what it can find at those locations. Once complete,
it will place all matching files in the task's files array (this.files within the context
of a task).

Setting Up Grunt

[50]

Next, we will cover the various ways that we can describe files for various use cases.
Firstly, however, we'll discuss what it means to match a file. File matching within
Grunt uses a module written by Isaac Schlueter: node-glob. File globbing comes
from Unix in the 70s, when a simple language was invented to allow wildcard
selection of files. For example, *.txt will match both a.txt and b.txt. Here is
an extract from the Grunt documentation describing globbing options available in
Grunt (http://gswg.io#grunt-globbing):

"While this isn't a comprehensive tutorial on globbing patterns, know that in a
filepath:

* matches any number of characters, but not /

? matches a single character, but not /

** matches any number of characters, including /, as long as it's the only thing in
a path part

{} allows for a comma-separated list of "or" expressions

! at the beginning of a pattern will negate the match

All most people need to know is that foo/*.js will match all files ending with
.js in the foo/ subdirectory, but foo/**/*.js will match all files ending with
.js in the foo/ subdirectory and all of its subdirectories."

Next, we'll review portions of Code example 07-config-files. This example
contains one task showTargetFiles, which displays the files array of each of
its targets:

// Register a multitask (runs once per target)
grunt.registerMultiTask('showTargetFiles', function() {
 // Show the 'files' array
 this.files.forEach(function(file) {
 console.log ("source: " + file.src + " -> " +
 "destination: " + file.dest);
 });
});

Based on this task, we'll notice that each file in the files array contains src and
dest properties. The src property in this case is the output from matching the input
globs against the filesystem. Each of the following target examples contains src
inputs and also the result of this task.

Chapter 2

[51]

Single set of source files
This is the compact format; the target may describe one set source of files using
the src property, along with an optional destination file using the dest property.
Without a destination, this format is typically used for read-only tasks, like code
analysis such as our string checker task:

target1: {
 src: ['src/a.js', 'src/b.js']
}

We could shorten the preceding example using the {} syntax described earlier, to
denote a or b. We will also add a destination property:

target1: {
 src: 'src/{a,b}.js',
 dest: 'dest/ab.js'
}

Notice that we have left out the array in this second example as it is not required
since we're specifying only one glob string. If we wanted to define multiple sets of
source files, we would need to use the files property.

Multiple sets of source files
To describe multiple source sets with single destination, we can use the "Files array
format". For example, this format could be useful when describing multiple file
concatenations:

 target1: {
 files: [
 { src: 'src/{a,b,c}.js', dest: 'dest/abc.js' },
 { src: 'src/{x,y,z}.js', dest: 'dest/xyz.js' }
]
 }

We can get an equivalent result with the more compressed: "Files object format",
where the files property is now an object instead of an array, with each key being
the destination and each value being the source, as follows:

 target1: {
 files: {
 'dest/abc.js': 'src/{a,b,c}.js',
 'dest/xyz.js': 'src/{x,y,z}.js'
 }
 }

Setting Up Grunt

[52]

Moreover, when we specify a set of files using an object with src and dest, we have
the choice to use some additional options; one of these options will allow us to map
directories as opposed to files.

Mapping a source directory to destination directory
Often we would like to convert a set of source files into the same set of destination
files. In this case, we're essentially choosing a source directory and a destination
directory. This is useful when compiling CoffeeScript (or any other source-to-source
compilation) and we'd like to maintain the directory structure, whilst still running
each individual file via the transform of our choosing. This is done using the expand
option. For instance, if we wanted to compress all of our .js source files into a result
set of the .min.js files, we could manually map each file from one directory
to another:

 target1: {
 files: [
 {src: 'lib/a.js', dest: 'build/a.min.js'},
 {src: 'lib/b.js', dest: 'build/b.min.js'},
 {src: 'lib/subdir/c.js', dest: 'build/subdir/c.min.js'},
 {src: 'lib/subdir/d.js', dest: 'build/subdir/d.min.js'},
],
 }

However, with each file addition, we will need to add another line of configuration.
With the expand option, a destination for each of matched source files will be
automatically generated based on the source file's path and additional options.
Here, target2 is equivalent to target1, however as we add new source files, they
will automatically be matched by our '**/*.js' glob string and mapped to the
appropriate destination file:

 target2: {
 files: [
 {
 expand: true,
 cwd: 'lib/',
 src: '**/*.js',
 dest: 'build/',
 ext: '.min.js'
 },
],
 }

Chapter 2

[53]

Here are the additional options available at http://gswg.io#configuring-tasks
for use inside any file object:

"expand Set to true to enable the following options:

cwd All src matches are relative to (but don't include) this path.

src Pattern(s) to match, relative to the cwd.

dest Destination path prefix.

ext Replace any existing extension with this value in generated dest paths.

flatten Remove all path parts from generated dest paths.

rename This function is called for each matched src file, (after extension renaming
and flattening). The dest and matched src path are passed in, and this function
must return a new dest value. If the same dest is returned more than once, each
src which used it will be added to an array of sources for it."

Refer to Code example 07-config-files for demonstrations of each file
configuration method.

Templates
In the preceding configuration section, we covered the use of grunt.config. Here,
we cover one of the reasons why we use a special "getter" and "setter" API to modify
a simple object. When we set values in our configuration with grunt.config.set or
grunt.initConfig, we can use the Grunt template system to reuse other portions of
our configuration. For example, if we defined some properties:

//Code Example 08-templates
grunt.initConfig({
 foo: 'c',
 bar: 'b<%= foo %>d',
 bazz: 'a<%= bar %>e'
});

Then, if we run the task:

//Code Example 08-templates
grunt.registerTask('default', function() {
 grunt.log.writeln(grunt.config.get('bazz'));
});

Setting Up Grunt

[54]

We should see:

$ grunt

Running "default" task

abcde

When we use grunt.config.get("…"), internally Grunt is using the grunt.
template.process function to resolve each template recursively (that is, we can
have templates inside other templates). Grunt templates are most useful when we
wish to perform many tasks on a single set of files. We can define this set once and
then use Grunt templates to re-use it multiple times. For example, with the following
configuration:

//Code example 09-templates-array
grunt.initConfig({
 foo: ['a.js','b.js','c.js','d.js'],
 bazz: '<%= foo %>'
});

Our preceding task returns:

Running "default" task

['a.js', 'b.js', 'c.js', 'd.js']

When using the grunt.config.get function to retrieve the bazz property, it does
not return a string, since bazz only contains the template reference to foo. Instead, it
is replaced by the foo array.

Summary
At this point, we have Node.js along with npm installed on our machine. We
have the npm module grunt-cli installed globally, providing us with the grunt
executable. We understand the basic premise of how modules work in Node.js and
we know how to find and install modules from npm. Lastly, we understand the
purpose of the package.json file and the Gruntfile.js file. In the next chapter, we
will learn how to create our own tasks using Grunt.

Using Grunt

Now that we've installed and configured Grunt, we're ready to use it. In this chapter,
we'll review creating our own tasks and cover the finer points omitted in previous
chapters. We shall also cover the various methods of executing tasks over and above
simply running Grunt on the command-line. Finally, we will cover how to choose
the most appropriate tasks for the job and exactly how to integrate them into our
Grunt build.

Creating your own tasks
In this section, we shall explore the creation of Grunt tasks in more detail, specifically
normal tasks and multitasks, and asynchronous tasks.

Tasks
As exemplified previously, creating tasks is extremely simple. We provide a name
and a function to grunt.registerTask and we're ready to execute. Tasks (as opposed
to multitasks) are best suited to build processes that will only be performed once
in a given build. A real world example of such a process might be to update a
deployment log file, which we could run whenever we deploy, providing a simple
history of deployments for future reference. This task might look like:

//Code example 01-deploy-log-task
var fs = require('fs');
module.exports = function(grunt) {

 grunt.registerTask('log-deploy', function() {
 var message = 'Deployment on ' + new Date();
 fs.appendFileSync('deploy.log', message + '\n');
 grunt.log.writeln('Appended "' + message + '"');
 });

};

Using Grunt

[56]

See the Node.js API documentation for more information on each
built-in module: http://gswg.io#node-api.

On the first line, we are requiring (or importing) the built-in Node.js file system
module: fs. Then, inside our log-deploy task, we'll use the fs.appendFileSync
method which will append arbitrary text to a given file (first creating the file, if it
doesn't exist). When we run this task, it should create a deploy.log file and display:

$ grunt log-deploy
Running "log-deploy" task
Appended "Deployment on Wed Aug 28 2013 20:43:54 GMT+1000 (EST)"

Done, without errors.

The task object
We can access the properties of the task currently running via the grunt.current.
task object. When tasks are executed, the current task object is used as the function
context, where it may also be accessed via the JavaScript this operator.

The task object has the following properties:

• name – a string set to the task name (the first parameter provided to grunt.
registerTask).

• async – a function which notifies Grunt that this task is asynchronous and
returns a callback. There is more on this in the Asynchronous tasks section.

• requires – a function which accepts an array of task names (strings), then
ensures that they have previously run. So, if we had a deploy task we might
use this.requires(["compile"]), which will ensure we have compiled
our code before we deploy it.

• requiresConfig – an alias to the grunt.config.requires function, briefly
touched on in Chapter 2, Setting Up Grunt. This function causes the current
task to fail if a given path configuration property does not exist.

• nameArgs – a string set as the task name including arguments used when
running the task.

• args – an array of all arguments used to run the task.
• flags – an object which uses each of the args as its keys and true as the

value. This allows us to use the arguments as a series of switches. So, if we
ran the task foo with grunt foo:one:two, then this.flags.two would be
true but this.flags.three would be undefined (which is falsy).

Chapter 3

[57]

• errorCount – a number representing the number of calls to grunt.log.
error.

• options – a function used to retrieve the task's configuration options
which is functionally equivalent to grunt.config.get([this.name,
"options"]). However, in the next section on multitasks, the options
function becomes more useful.

The following is a simple example demonstrating the use of the task object:

//Code example 02-task-object
module.exports = function(grunt) {

 grunt.registerTask('foo', function() {
 console.log('My task "%s" has arguments %j',
 this.name, this.args);
 });

};

Now, if we run this task with grunt foo:bar:bazz we should see:

$ grunt foo:bar:bazz
Running "foo:bar:bazz" (foo) task
My task "foo" has arguments ["bar","bazz"]

Done, without errors.

For more information on the task object, refer to
http://gswg.io#grunt-task-object, and for more information on the
this operator in JavaScript, refer to http://gswg.io#this-operator.

Task aliasing
Instead of providing a function to grunt.registerTask, we can also provide an
array of strings; this will create a new task that will sequentially run each of the tasks
listed in the array, essentially allowing us to give a name to a set of other tasks. For
example, we could create three tasks: build, test, and upload, then alias them as a
new task upload by using the following code:

//Code example 03-task-aliasing
module.exports = function(grunt) {

 grunt.registerTask('build', function() {
 console.log('building...');
 });

Using Grunt

[58]

 grunt.registerTask('test', function() {
 console.log('testing...');
 });

 grunt.registerTask('upload', function() {
 console.log('uploading...');
 });

 grunt.registerTask('deploy', ['build', 'test', 'upload']);
};

So, when we run grunt deploy, it will perform all three tasks in sequence:

$ grunt deploy
Running "build" task
building...

Running "test" task
testing...

Running "upload" task
uploading...

Done, without errors.

Now, let's assume that our build process was more complex. We could further divide
up each of these three tasks into smaller subtasks. For instance, our fictitious build
task above could also be an alias made up of build-related tasks, such as compile-
coffee-script, compile-tests, copy-html, and so on. In the next section, we'll see
that multitasks fit the mold of most build processes, and therefore, when it comes
time to name (or alias) a set of tasks, we'll most likely be referencing multitasks and
their targets.

Multitasks
As with many build tools, the majority of Grunt tasks perform static checks
or transforms on groups of files. This was the impetus for the introduction of
multitasks. As we have seen in previous chapters, multitasks are like tasks, however,
they accept multiple configurations. Grunt will use each property (except options)
of a multi task's configuration as an individual configuration, called a target. This
allows us to define a single task which is capable of being run many times, each time
performing different actions based on each configuration. For example, let's review
how we would implement a copy multitask, which copies files based on a set of one-
to-one (source to destination) mappings:

Chapter 3

[59]

//Code example 04-copy-multi-task
grunt.registerMultiTask('copy', function() {

 this.files.forEach(function(file) {
 grunt.file.copy(file.src, file.dest);
 });

 grunt.log.writeln('Copied ' + this.files.length + ' files');
});

This task iterates through the this.files array copying each file object's source
(src) to its destination (dest). In order to run this task, we must define at least one
target. So, let's initialize our copy task configuration with two targets, each with two
simple file mappings:

//Code example 04-copy-multi-task
grunt.initConfig({
 copy: {
 target1: {
 files: {
 'dest/file1.txt': 'src/file1.txt',
 'dest/file2.txt': 'src/file2.txt'
 }
 },
 target2: {
 files: {
 'dest/file3.txt': 'src/file3.txt',
 'dest/file4.txt': 'src/file4.txt'
 }
 }
 }
});

We can now run target2 of the copy task using the command grunt
copy:target2, which should result in:

$ grunt copy:target2
Running "copy:target2" (copy) task
Copied 2 files

Done, without errors.

Using Grunt

[60]

Furthermore, if we omit the target name and simply use the command, grunt copy,
then Grunt will run all targets of the copy task:

$ grunt copy
Running "copy:target1" (copy) task
Copied 2 files

Running "copy:target2" (copy) task
Copied 2 files

Done, without errors.

Remember, the this.files array is filled with file objects using the methods
described in the Configuring Files section in Chapter 2, Setting Up Grunt. This brings us
to the next section on the multitask object.

The multitask object
As with tasks, we can access task properties of the currently running multitask
via the grunt.current.task property. Similarly, the multitask object is set as the
function context (the this operator) when the task is invoked. In addition to all of
properties of the task object, the multitask object contains the following:

• target – a string set to the target name (the property name used inside our
Grunt configuration).

• files – an array of file objects. Each object will have an src property and
an optional dest property. This array is useful when we have described sets
of files for use in a transform, where there are source (or input) files and
optional destination (or output) files.

• filesSrc – an array of strings representing only the src property of each
file object from the above files array. This array is useful for when we have
described sets of source files and we have no use for destination files. For
instance, plugins that perform static analysis, like JSHint, would only require
source files.

• data – which is the target object itself. It is best used as a fallback if the files
array and the options function don't provide the functionality necessary. In
most cases, the use of this property is not required.

Chapter 3

[61]

Although the options function also exists on the task object, the options function
on the multitask object performs an extra step:

• options – a function used to retrieve the combination of the task's and
target's configuration options. This is functionally equivalent to merging
the results of grunt.config.get([this.name, "options"]) and grunt.
config.get([this.name, this.target, "options"]). This is useful
because the user of the task can set task-wide defaults and then, within each
target, they can override these defaults with a set of target-specific options.

For more information on the multitask object, see
http://gswg.io#grunt-task-object.

Asynchronous tasks
Synchronous tasks are considered complete as soon as the task function returns.
However, in some cases we may need to utilize libraries with asynchronous APIs.
These APIs will have functions that provide their results via callbacks instead of the
return statement. If we were to use an asynchronous API in a synchronous task, this
would cause Grunt report success (no errors detected) and incorrectly continue onto
the next task in the list.

As described previously, both the task object and the multitask object contain an
async function, which notifies Grunt that the current task is asynchronous and also
returns a done function. This done function is used to manually control the result of
our task. For example, we could create a task that retrieves a file using HTTP and
stores the contents on disk:

//Code example 05-async-webget
var request = require('request');
var url = 'https://raw.github.com/jpillora/'+
 'gswg-examples/master/README.md';

module.exports = function(grunt) {
 grunt.registerTask('webget', function() {
 var done = this.async();
 request(url, function(err, response, contents) {
 if(err) {
 done(err);
 } else if(response.statusCode !== 200) {
 done(new Error('Not OK'));
 } else {
 grunt.file.write('FILE.md', contents);
 grunt.log.ok('FILE.md successfully created');
 done();

Using Grunt

[62]

 }
 });
 });
};

At the top of our example Gruntfile.js, we are requiring the popular module for
performing HTTP requests: request. Since request performs an asynchronous
HTTP request, we'll use the task object's async function (this.async()) to
both place this task in asynchronous mode, and then retrieve the done function.
Subsequently, we can signal failure to Grunt by passing an Error object or false to
the done function. Anything else will signal success.

In this example, once we've received the response we shall first check that there
were no errors with sending the request. If there are errors, we'll pass the err
object straight to done. Next, we'll check if we received response successfully by
confirming that the HTTP statusCode is 200. If it is not, we will pass our own
custom error "Not OK" to done. Once both error checks have passed, we can finally
write the response's contents to disk and then call done(), informing Grunt that
this asynchronous task has completed successfully. So, when we run this task, we
should see:

$ grunt webget
Running "webget" task
>> FILE.md successfully created

Done, without errors.

Running tasks
Up until this point, we have learnt how to configure and create tasks. Now it is time
to run them!

Command-line
Some Node.js command-line tools, such as express, may also be used as a module,
whereas Grunt may only be used via the command-line. Once we've globally
installed the grunt-cli module, our system will have access to the
grunt executable.

To run our newly loaded or created tasks, we need to provide Grunt with a list of
task names as space-separated command-line arguments. This will result in Grunt
executing each specified task in sequence; which means we can easily dictate the
order of task execution. We could run foo then bar with:

Chapter 3

[63]

$ grunt foo bar

Or, we run bar then foo with:

$ grunt bar foo

There is a special case, however, when we execute grunt on its own. Grunt interprets
this as grunt default and subsequently will attempt to run the default task.
Therefore, by registering a default task, we can make it easy to run our most
common task. Similar to our previous example in the Task aliasing section, we could
alias our build and test tasks as the default task with the following Gruntfile.
js file:

//Code example 06-default-tasks
module.exports = function(grunt) {

 grunt.registerTask('build', function() {
 console.log('building...');
 });

 grunt.registerTask('test', function() {
 console.log('testing...');
 });

 grunt.registerTask('default', ['build', 'test']);
};

Now, we can simply run grunt, which should result in:

$ grunt
Running "build" task
building...

Running "test" task
testing...

Done, without errors.

We can run multitasks in a similar fashion; however, when we specify a multitask,
Grunt will execute all of its targets. If we wanted to run a particular target then we
can append it to the task name. So, if we wanted to run the foo task's target1 target,
then we would execute grunt foo:target1. For example, let's convert our build
and test tasks in the previous example to multitasks and test this out:

//Code example 07-default-multi-tasks
module.exports = function(grunt) {

Using Grunt

[64]

 grunt.initConfig({
 build: {
 main: {},
 extra: {}
 },
 test: {
 main: {},
 extra: {}
 }
 });

 grunt.registerMultiTask('build', function() {
 console.log('building target ' + this.target + '...');
 });

 grunt.registerMultiTask('test', function() {
 console.log('testing target ' + this.target + '...');
 });

 grunt.registerTask('default', ['build:main', 'test:main']);
};

We can explicitly run the build task's main target and then the test task's main
target with:

$ grunt build:main test:main
Running "build:main" (build) task
building target main...

Running "test:main" (test) task
testing target main...

Done, without errors.

However, extending from the previous example, we could also add these targets in
our default task alias. As you can see in the previous code, we have placed targets
inside our array of task names, and therefore, when we run grunt we should see the
same output:

$ grunt
Running "build:main" (build) task
building target main...

Running "test:main" (test) task
testing target main...

Done, without errors.

Chapter 3

[65]

Task arguments
Additionally, when we specify a task we may also include an optional, colon-
separated, list of arguments. For example, the following Gruntfile.js defines a foo
task, which prints its first and second parameters:

//Code example 08-task-args
module.exports = function(grunt) {

 grunt.registerTask('foo', function(p1, p2) {
 console.log('first parameter is: ' + p1);
 console.log('second parameter is: ' + p2);
 });

};

Now, we can run the foo task with the arguments bar and bazz using:

$ grunt foo:bar:bazz
Running "foo:bar:bazz" (foo) task
first parameter is: bar
second parameter is: bazz

Done, without errors.

However, when we wish to run a multitask, before we can specify arguments we
must first specify the target. Let's convert the previous example's foo task into a
multitask:

//Code Example 09-multi-task-args
module.exports = function(grunt) {

 grunt.initConfig({
 foo: {
 ping: {},
 pong: {}
 }
 });

 grunt.registerMultiTask('foo', function(p1, p2) {
 console.log('target is: ' + this.target);
 console.log('first parameter is: ' + p1);
 console.log('second parameter is: ' + p2);
 });

};

Using Grunt

[66]

Similarly, but with the inclusion of ping as the target:

$ grunt foo:ping:bar:bazz
Running "foo:ping:bar:bazz" (foo) task
target is: ping
first parameter is: bar
second parameter is: bazz

Done, without errors.

With these examples in mind, we can see that we could create aliases which use
tasks, multitasks, targets, and arguments all together, resulting in an extremely
flexible build.

Terminology Tip—When invoking a function, we provide
it with arguments. When inside a function, we use its
parameters. We can remember this with arguments outside,
parameters inside.

Runtime options
Not to be confused with configuration options, runtime options must be specified
on the command-line in addition to our list of tasks. Runtime options are used to
create Grunt-wide settings for a single execution of Grunt. Runtime options must
be prefixed with at least one dash, "-", otherwise they will be seen as task name.
Runtime options are best used when one or many tasks have a configuration setting
that we wish to modify only some of the time. For instance, when we execute
Grunt we can enable our optimize option to direct each task specified to run in an
optimized mode. This could remove debug statements, compress output, and so
on. Once we've specified a runtime option on the command-line, we can retrieve its
value using the grunt.option function.

For example, let's say we have the following Gruntfile.js:

//Code example 10-runtime-opts
module.exports = function(grunt) {
 console.log('bar is: ' + grunt.option('bar'));
 grunt.registerTask('foo', function() {
 //nothing here...
 });
};

Chapter 3

[67]

Now, if we run this empty foo task with no options, we'll see:

$ grunt foo
bar is: undefined
Running "foo" task

Done, without errors.

Then, if we run this task again with the bar option set:

$ grunt foo --bar
bar is: true
Running "foo" task

Done, without errors.

If we like, we can give the bar option a specific value using the =value suffix:

$ grunt foo --bar=42
bar is: 42
Running "foo" task

Done, without errors.

In this case we are using the grunt.option function outside of the task. This
is important since it means we can use our runtime options to assist with the
configuration of our tasks. Note the console.log output occurs before the "Running
"foo" task" output; this is because Grunt executes our Gruntfile.js in order
to initialize our tasks and configuration, and only then the tasks specified on the
command line are run in sequence.

For details on the Grunt Runtime Options API, refer to
http://gswg.io#grunt-options. In Chapter 4, Grunt in Action, in the Step 5 – tasks
and options section, we will review a technique to achieve environment specific builds
through the use of runtime options.

Task help
When we are provided with an existing project for which there is no explicit
documentation regarding the Grunt build, we can start off by listing the available
tasks using the grunt --help command. When we use grunt.registerTask or
grunt.registerMultiTask, we may optionally include a description. Let's review
an example of this:

//Code example 11-task-help
module.exports = function(grunt) {

Using Grunt

[68]

 grunt.registerTask('analyze',
 'Analyzes the source',
 function() {
 console.log('analyzing...');
 }
);

 grunt.registerMultiTask('compile',
 'Compiles the source',
 function() {
 console.log('compiling...');
 }
);

 grunt.registerTask('all',
 'Analyzes and compiles the source',
 ['analyze','compile']
);

};

Now, if we run grunt --help, we should see the following excerpt within
the output:

$ grunt --help

Grunt: The JavaScript Task Runner (v0.4.2)

Usage

 grunt [options] [task [task ...]]

…

Available tasks

 analyze Analyzes the source

 compile Compiles the source *

 all Analyzes and compiles the source

…

The Grunt static help text has been omitted, leaving only the dynamic text. Here,
we can see that Grunt has listed each of our tasks, along with its description, and
multitasks are suffixed with a star *. This is useful because it might not be obvious to
those new to this build that the all task runs both the analyze task and the
compile task.

Chapter 3

[69]

Programmatically
Although it is possible to execute Grunt from another program, it is intended to be
used as a command-line utility, and therefore its API is only to be used with the
grunt executable. We can, however, programmatically run tasks within other tasks,
allowing us to conditionally run a series of tasks.

The following example is very similar to Code example 04-linting from Chapter 1,
Introducing Grunt. This time, however, instead of defining our JSHint rules inside our
Gruntfile.js, we are defining them in a portable .jshintrc file. This is favorable
to some as it provides the ability to use a company-wide JavaScript coding style:

//Code example 12-conditional-lint
module.exports = function(grunt) {

 // Load the plugin that provides the "jshint" task.
 grunt.loadNpmTasks('grunt-contrib-jshint');

 // Project configuration.
 grunt.initConfig({
 jshint: {
 options: {
 jshintrc:'.jshintrc'
 },
 target1: 'src/**/*.js'
 }
 });
};

With this configuration, however, the jshint task will fail if the .jshintrc file
is missing:

$ grunt jshint

Running "jshint:target1" (jshint) task

ERROR: Can't find config file: .jshintrc

Therefore, if we wanted to make our jshint task run only when we provide a
.jshintrc file, then we could make another task that controls the execution of the
jshint task:

// A new task to make "jshint" optional
grunt.registerTask('check', function() {
 if(grunt.file.exists('.jshintrc')) {
 grunt.task.run('jshint');
 }
});

Using Grunt

[70]

In our new check task, we shall first verify that the .jshintrc exists, and then we'll
programmatically run the jshint task using the grunt.task.run function. Now,
when we run the check task without a .jshintrc file, Grunt should do nothing and
report success:

$ grunt check

Running "check" task

Done, without errors.

Though, when we include our .jshintrc file along side our Gruntfile.js and
rerun our check task, we should see the following:

$ grunt check

Running "check" task

Running "jshint:target1" (jshint) task

>> 1 file lint free.

Done, without errors.

For an example of a .jshintrc file, please refer to
http://gswg.io#jshintrc-example. For a summary of JavaScript Linting, please
return to the Static Analysis or Linting section of Chapter 1, Introducing Grunt.

Automatically
One of the most popular Grunt plugins is grunt-contrib-watch
(http://gswg.io#grunt-contrib-watch) as it allows us to place Grunt in the
background and have it automatically run our tasks as they're needed. Written by
Kyle Robinson Young, the watch task instructs Grunt to watch a particular set of files
for changes and execute a particular task or set of tasks in response. In the following
example, we'll watch our source files, and then run our JavaScript concatenation task
concat whenever any of these files are changed:

//Code example 13-watch
module.exports = function(grunt) {

 // Load the plugins that provide the "concat" and "watch" tasks.
 grunt.loadNpmTasks('grunt-contrib-concat');
 grunt.loadNpmTasks('grunt-contrib-watch');

 // Project configuration.

Chapter 3

[71]

 grunt.initConfig({
 srcFiles: ["src/a.js", "src/b.js", "src/c.js"],
 concat: {
 target1: {
 files: {
 "build/abc.js": "<%= srcFiles %>"
 }
 }
 },
 watch: {
 target1: {
 files: "<%= srcFiles %>",
 tasks: ["concat"]
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['concat', 'watch']);
};

At the top of our Gruntfile.js file, we'll load both the plugins that provide the
concat and watch tasks. We will then configure them using a shared srcFiles
property. This means we can modify our source files once, and all tasks using this set
of files will stay current. This helps to keep our build DRY (http://gswg.io#dry) by
creating a single source of truth. All targets of the watch task (only target1 in this
case) require a tasks property that should specify a list of tasks to run when one of
the target's files are changed. Finally, we'll provide a default task that runs concat
followed by watch. Running grunt at this point should produce:

grunt
Running "concat:target1" (concat) task
File "build/abc.js" created.

Running "watch" task
Waiting...

At this point, our watch task is running and is Waiting... for one of our files to
change; so if we modify and save src/b.js, we should see the following appended
to our output:

OK
>> File "src/b.js" changed.

Running "concat:target1" (concat) task

Using Grunt

[72]

File "build/abc.js" created.

Done, without errors.
Completed in 0.648s at Tue Sep 17 2013 21:57:52 GMT+1000 (EST)
Waiting...

Our concat task was run, and our watch task is Waiting... again, ready for more
changes. Since we are watching our source files, we can now minimize our terminal
window and continue with our development workflow, knowing that Grunt is
running in the background, taking care of the "grunt" work for us.

Using third-party tasks
Although creating our own tasks is relatively straightforward, a vast number
of plugins have already been implemented, providing tasks for many common
use cases. Therefore, we should make sure we've thoroughly searched before we
reinvent the wheel.

Searching for tasks
We've covered searching for modules in Chapter 2, Setting Up Grunt, in the section
on npm, where we covered basic npm commands, including npm search. However,
for those more comfortable with a web search, we can also use the Grunt website's
plugin page (http://gswg.io#grunt-plugins). Once an hour, the Grunt team will
execute npm search gruntplugin and store the results. When you visit the plugin
page, this cached list will be retrieved and can be filtered by entering a query into
the text input. Keep in mind, however, that even if a plugin was called grunt-foo,
it would only be contained in this page if it were also tagged with gruntplugin
(which some may forget to do). So when searching for preexisting plugins, we start
with Grunt's plugin page, then move onto npm search, and finally we should resort
to Google. Once we've found a set of candidate tasks, we will then need to decide
which to use.

Official versus user tasks
The Grunt team has come up with a naming convention for all plugins that they
officially support. Such plugins are prefixed with grunt-contrib-, whereas plugins
created by the rest of the community are simply prefixed with grunt-. This allows us
to easily discern between official Grunt plugins and user Grunt plugins.

Chapter 3

[73]

Task popularity
The next step in our search for the appropriate plugin is to look at npm
download statistics. These statistics can be found on the package page of all
modules in the npm repository. For example, to view the download statistics
for the Grunt plugin grunt-contrib-uglify, we can visit
http://gswg.io#npm-package:grunt-contrib-uglify, and we should see:

Here, we can see that this Grunt plugin was downloaded 133,299 times in the last
month. This download count can be viewed as an implicit vote from each of the
plugin's users.

Task features
A plugin's download count, however, doesn't necessarily mean it will have
all of the features we need. For example, the grunt-s3 plugin
(http://gswg.io#npm-package:grunt-s3) is the most popular
Amazon S3 Grunt plugin:

Using Grunt

[74]

However, at the time this book was published, the Amazon S3 plugin was
lacking a local cache (this results in higher bandwidth usage, which is
suboptimal on a slow connection). Also, it was using the knox npm module to
interface with S3, instead of the newly released, and officially supported, Amazon
Node.js SDK aws-sdk. To remedy this, I wrote the grunt-aws plugin
(http://gswg.io#npm-package:grunt-aws). Currently, grunt-aws is not as
popular as grunt-s3, however, it has the features I require:

Therefore, the download count is useful, though we should also view the plugin's
documentation to ensure it supports the features we seek.

Task stars
As well as finding documentation on the task's GitHub repository, we will also find
the task's star count. In recent years, GitHub has become the home for the majority
of open source projects. Currently, 98 percent of all Grunt plugins have their
source code on GitHub. All GitHub repositories have a list of stargazers, which are
people who have starred that repository (or marked it as a favorite). This counter is
displayed on each repository alongside the Star button, and this star count may be
viewed as explicit votes, which vouch for the project's usefulness.

Summary
In summary, we should now be equipped with the knowledge to create our own
tasks and multitasks using the full extent of features available to us. We should also
be able to execute tasks in a wide variety of ways, and understand the situations in
which to use runtime options, arguments, and when to simply use configuration.
In the next chapter, we shall step through a complete example of building a Web
Application from scratch using both Grunt, and the lessons we've learnt in these first
three chapters.

Grunt in Action

It is now time to put our newfound knowledge into action. Grunt can be used in a
wide variety of ways; however, the most common use case is a static website. Static
websites are growing in popularity, as the web development industry requires
ever-increasing levels of scalability. Although using a Content Management
System (CMS) is a common method of managing a website, it is not the most
efficient method of serving a website. This is because the majority of CMSs, such as
WordPress, require PHP and an accompanying database. Static files on the other
hand, can be hosted very cheaply on a cloud service such as Amazon's S3. Even if
our website requires a server component to provide authentication, we may, for
example, reduce the load on the server by moving as much logic as possible into
the frontend. This provides us with a greater ability to scale, while reducing costs
at the same time. We can take this idea of scalability even further with the concept
of single-page applications. Traditionally, each page we view requires the server
to answer requests for the same set of assets over and over, while also providing
dynamic HTML for that given page. In a single-page application, as the name
suggests, the website is made up of only one page. This single page intelligently
responds to user interaction, hence its description as an application instead of a
website. In this chapter, we start from scratch and carefully go through the process of
using Grunt to create the build for an optimized single-page application.

Creating the build
Let's look at the various steps involved in using Grunt to create the build for a single-
page application.

Grunt in Action

[76]

Step 1 – initial directory setup
We begin our project by creating a root directory, project. Within this directory,
we create an src directory to house our source files. Then, we initialize the project's
package.json file, install the local grunt module, and finally, create an empty
Gruntfile.js file. We can do this on the command line with:

$ mkdir project

$ cd project/

$ mkdir src

$ npm init

$ npm install --save-dev grunt

$ echo "module.exports = function(grunt) {};" > Gruntfile.js

As we might expect, the echo command echoes the provided string back to the
command line (which is known as standard out or "stdout"). The arrow (>), however,
redirects standard out to a file. So, this last line is just a short way of creating and
initializing a file. It is not necessary to create these files and directories on the
command line, as long as we end up with the following directory structure:

//Code example 01-project
project/
├── Gruntfile.js
├── node_modules
│ └── grunt
├── package.json
└── src

At this point, we can now execute grunt, since we have no tasks; however, we
should see the following command:

$ grunt

Warning: Task "default" not found. Use --force to continue.

Aborted due to warnings.

Step 2 – initial configuration
With many websites, including single-page applications, we can end up with an
increasing amount of JavaScript, CSS, and HTML as they grow in complexity. We
can improve code manageability by simply concatenating any number of individual
files spread out across an organized set of folders. As well as splitting up our code
into many files, we can also improve the code itself.

Chapter 4

[77]

This is achieved through use of transcompile languages. In this step, we are
using CoffeeScript, Stylus, and Jade, as each provides a minimalist syntax for its
corresponding language. This minimalism improves readability by making our code
cleaner and more succinct. For instance, a halving of the code required to produce
the same result is often achieved. In addition to the cleaner syntax, there are added
language features that can further increase productivity. For more information and
examples of each, visit the following links:

• CoffeeScript (http://gswg.io#coffeescript)
• Stylus (http://gswg.io#stylus)
• Jade (http://gswg.io#jade)

However, we should keep in mind that there are alternatives to these three
transcompile languages. We can easily swap out CoffeeScript for TypeScript or
Dart, swap out Stylus for Sass or LESS, and swap out Jade for Haml or EJS. This
replacement is easy because each of these defines a source code transformation, and
since transcompiling Grunt plugins are mostly similar, our configuration should also
look similar, regardless of which language we choose.

The programs that perform transcompilation are known as preprocessors. Therefore,
Grunt plugins that perform transcompilation may be seen as thin wrappers around
a given preprocessor. Now, we will install a Grunt plugin for each of our chosen
languages and their corresponding preprocessors:

$ npm install --save-dev grunt-contrib-coffee grunt-contrib-jade grunt-
contrib-stylus

Both Stylus and Sass are very similar, however, Stylus is my CSS
preprocessor of choice because the Stylus preprocessor is written
in JavaScript, so it runs in Node.js; whereas the Sass preprocessor
(http://gswg.io#grunt-contrib-sass) requires Ruby, and the
Ruby Sass library, to be installed.

It should be noted that we also have the option of not using a preprocessor at all.
In the next sections we will cover assets optimization, which can also be seen as a
transform. So, even when using Vanilla JavaScript, CSS, and HTML, we find we still
need Grunt to perform our optimizations.

Grunt in Action

[78]

Before we configure these plugins, let's first create and compile some source files. We
will segregate our source files into three subdirectories: scripts, styles, and views.
Note that these directory names are chosen because they are language agnostic. Once
we have created each of these subdirectories inside our src directory, we then need
to create an initial file in each, as below:

//Code example 02-project
// src/scripts/app.coffee
alert 'hello world'

// src/styles/app.styl
html, body
 margin 0
 padding 0

// src/views/app.jade
!!!5
html
 head
 link(rel="stylesheet", href="css/app.css")
 body
 h5 Hello World
 script(src="js/app.js")

When placing our link tags (stylesheets) and script tags inside our HTML,
it is best to place all of our link tags at the top, inside the head element,
and to place all of our scripts at the very bottom, at the end of the body
element. This causes browsers to load the stylesheets first, letting the user
see a correctly styled version of the page while it is loading.

Now, inside our Gruntfile.js file, we will load the tasks provided by these plugins,
then configure each to compile the corresponding app file from our src directory
into our build directory:

//Code example 02-project
// Gruntfile.js
module.exports = function(grunt) {

 // Load tasks provided by each plugin
 grunt.loadNpmTasks("grunt-contrib-coffee");
 grunt.loadNpmTasks("grunt-contrib-stylus");
 grunt.loadNpmTasks("grunt-contrib-jade");

 // Project configuration

Chapter 4

[79]

 grunt.initConfig({
 coffee: {
 build: {
 src: "src/scripts/app.coffee",
 dest: "build/js/app.js"
 }
 },
 stylus: {
 build: {
 src: "src/styles/app.styl",
 dest: "build/css/app.css"
 }
 },
 jade: {
 build: {
 options: {
 pretty: true
 },
 src: "src/views/app.jade",
 dest: "build/app.html"
 }
 }
 });

 // Define the default task
 grunt.registerTask('default', ['coffee','stylus','jade']);
};

At this point, our project directory should look like:

//Code example 02-project
project/
├── Gruntfile.js
├── node_modules
│ ├── grunt
│ ├── grunt-contrib-coffee
│ ├── grunt-contrib-jade
│ └── grunt-contrib-stylus
├── package.json
└── src
 ├── scripts
 │ └── app.coffee
 ├── styles
 │ └── app.styl
 └── views
 └── app.jade

Grunt in Action

[80]

Now we are ready to transpile our source files. Since we have aliased our default
task to our coffee, stylus, and jade tasks, we can simply execute grunt, yielding:

$ grunt

Running "coffee:build" (coffee) task

File build/js/app.js created.

Running "stylus:build" (stylus) task

File build/css/app.css created.

Running "jade:build" (jade) task

File "build/app.html" created.

Done, without errors.

We should now have a new build directory that looks like:

build/
├── app.html
├── css
│ └── app.css
└── js
 └── app.js

This separation between our src and build directories is important, as the contents
of build will be overwritten without warning. Therefore, it is clear that the source
files are intended to be modified, whereas the build files are temporary. To further
emphasize the latter, we should add our build directory to our version control
system's ignore list. This will force the developer to run Grunt in order to generate
the build directory and help new developers get used to the Grunt workflow. It also
helps discover any bugs with the build.

Upon opening our newly generated app.html file, we should be greeted with the
following window:

Chapter 4

[81]

Step 3 – organizing our source files
In the previous step, we configured a one-to-one mapping for each task. In practice,
however, we will want a more robust solution.

Scripts
Let's start with our CoffeeScript files, as mentioned in Chapter 1, Introducing Grunt,
in the subsection on Concatenation. While it is important to separate functionality
into individual files, it is also important to reduce the number of scripts included on
the page. Both goals can be achieved through file concatenation. Let's now modify
our coffee task's configuration to compile and concatenate all files within our
scripts directory. Luckily, our coffee task allows us to select multiple source files,
providing us with the ability to concatenate them into one file:

//Code example 03-project
coffee: {
 build: {
 options: {
 join: true
 },
 src: "src/scripts/**/*.coffee",
 dest: "build/js/app.js"
 }
}

Grunt in Action

[82]

The join option tells the coffee task to concatenate before
compiling; this is favorable, as we shall soon see. We can view
examples, and a complete list of coffee task options, on
http://gswg.io#grunt-contrib-coffee plugin's GitHub
repository at http://gswg.io#grunt-contrib-coffee.

Instead of listing out individual files, the glob string src/scripts/**/*.coffee is
used to match all CoffeeScript files within scripts and its subdirectories. To see this
in action, we will add two utility functions, each in its own file:

//Code example 03-project
//src/scripts/util/add.coffee
add = (a, b) -> a + b

//src/scripts/util/subtract.coffee
subtract = (a, b) -> a – b

And we will also modify our app.coffee to make use of these functions:

//src/scripts/app.coffee
alert add 7, subtract 4, 1

Now, when we run our coffee task:

$ grunt coffee

Running "coffee:build" (coffee) task

File build/js/app.js created.

Done, without errors.

Then, display the resulting build/js/app.js file, we should see:

$ cat build/js/app.js
(function() {
 var add, subtract;

 alert(add(7, subtract(4, 1)));

 add = function(a, b) {
 return a + b;
 };

 subtract = function(a, b) {
 return a - b;
 };
}).call(this);

Chapter 4

[83]

The function wrapper around compiled code is known as an Immediately-
Invoked Function Expression (IIFE). By default, compiled CoffeeScript
code is wrapped in an IIFE, which essentially makes our code private. This
helps to separate our JavaScript from the rest of the JavaScript on the page,
and is considered best practice. We can read more about this concept on
Ben Alman's blog at http://gswg.io#iife. The join option, described
previously, causes one IIFE to be placed around all of our files instead of
wrapping each individual file.

In the above file, we notice our usage of add and subtract appears before they are
defined. This will result in an error. We fix this by using an array in the coffee task's
src property, and by explicitly placing app.coffee after the glob string to match all
CoffeeScript files:

 coffee: {
 build: {
 options: {
 join: true
 },
 src: [
 "src/scripts/**/*.coffee",
 "!src/scripts/app.coffee",
 "src/scripts/app.coffee"
],
 dest: "build/js/app.js"
 }
 }

To achieve this in Grunt version 0.4.x, we must first exclude app.coffee from the
file set (by prefixing the file path with an exclamation mark !), then re-include it.
Running grunt coffee and displaying the result should now correctly yield:

$ grunt coffee
...
$ cat build/js/app.js
(function() {
 var add, subtract;

 add = function(a, b) {
 return a + b;
 };

 subtract = function(a, b) {

Grunt in Action

[84]

 return a - b;
 };

 alert(add(7, subtract(4, 1)));

}).call(this);

Now when we open our app.html file again, we should see the following window:

Even if we choose not to use CoffeeScript and just use JavaScript, there is still value
in separating our files into individual pieces of functionality, then concatenating
them together. This can be done using the grunt-contrib-concat plugin in a
similar fashion. That is, in place of the coffee task configuration, we would insert
this concat task configuration:

 concat: {
 build: {
 src: [
 "src/scripts/**/*.js",
 "!src/scripts/app.js",
 "src/scripts/app.js"
],
 dest: "build/js/app.js"
 }
 }

Chapter 4

[85]

This technique allows us to freely create as many CoffeeScript (or JavaScript) files
and subdirectories as we like. Then when we run grunt, all script files inside src/
scripts will be merged into one file, build/js/app.js, which represents all of our
application's JavaScript.

For building cohesive single-page applications, I recommend
using AngularJS (http://gswg.io#angular). A useful
set of AngularJS tutorials (in screencast form) can be found at
http://gswg.io#angular-screencasts. Next, I would
recommend Ember.js (http://gswg.io#ember). Opposed
to simply using jQuery, these frameworks provide a convention
for structuring your JavaScript. This layout normalization of
each project becomes a strong advantage, as each developer on
the team knows where each portion of code should be.

Views
Next, we will give our views some structure. Here we use the term "view" as a
language agnostic name for Jade code. As mentioned previously, in place of Jade
we could also use Haml or EJS. Since we are building a single-page application, our
app.html file is all we need, so our one-to-one compilation will suffice. However,
we still want to avoid placing our entire application inside one file. In order to split
our Jade code across multiple files, we will use the include directive. The Jade
documentation on include (http://gswg.io#jade-include) describes how to
statically include chunks of Jade, or other content such as CSS or HTML, which live
in separate files. Below we shall make use of include by creating a logical separation
of our single page. The structure of a single-page application can vary widely;
however, in this example, we assume we have a header section, a content section,
and a footer section. Instead of writing the code for each section inside our app.jade
file, we will create a new app directory to house three new Jade files. Once complete,
we should have the following views folder:

src/views
├── app
│ ├── content.jade
│ ├── footer.jade
│ └── header.jade
└── app.jade

Now we can make use of our new files inside our app.jade with the include
directive:

!!!5
html

Grunt in Action

[86]

 head
 link(rel="stylesheet", href="css/app.css")
 body

 include app/header
 include app/content
 include app/footer

 script(src="js/app.js")

Running our jade task with grunt jade should leave us with the following build/
app.html file:

<!DOCTYPE html>
<html>
 <head>
 <link rel="stylesheet" href="css/app.css">
 </head>
 <body>
 <section class="header">this is the amazing header
section</section>
 <section class="content">
 <div class="top">some content with this on top</div>
 <div class="middle">and this in the middle</div>
 <div class="bottom">and this on the bottom</div>
 </section>
 <section class="footer">
 and this is the footer, with an awesome copyright
 symbol with the year next to it - © 2013
 </section>
 <script src="js/app.js"></script>
 </body>
</html>

Instead of placing our new Jade files alongside app.jade, we have put them inside
a new app directory. This is to prevent our views folder from becoming a large flat
structure. By just looking at the file hierarchy we can see that app.jade contains
head.jade, content.jade, and footer.jade.

Note: we could apply this idea again to our content.jade, inside our new app
folder by making a content folder with more Jade files, each representing views
inside content.jade. This small convention will assist us greatly when our
application becomes a 20,000-line monster.

Chapter 4

[87]

When our application begins to display the signs of monstrosity, we might wish
to add more one-to-one compilations and then use XMLHTTPRequest (XHR) to
asynchronously load the extra HTML as required. For example, Gmail might load the
"mail" view initially, and then dynamically load the "contacts" view when the user
navigates to the Gmail Contacts section. So, if we are writing a Gmail clone, our app.
html file would become mail.html and then we'd also add a contacts.html file.

Styles
Now, let's move onto our styles. We could organize our styles in the same way as
our scripts, by concatenating them all together using a "match all Stylus files" glob
string, or we could use the Stylus directive: @import, which is similar to Jade's
include directive. In this example, we will use the latter method. Though it may be
less time consuming to simply match all Stylus files in one fell swoop, by explicitly
defining which files are included, we can also choose where to include them.
Using the @import directive nested within our style definitions, we can reset our
file's indentation and avoid copious nesting. For example, we can do the following
modifications:

//src/styles/app.styl
html, body
 margin 0
 padding 0

.content
 @import "app/content"

@media (max-width: 768px)
 .content
 @import "app/m-content"

//src/styles/app/content.styl
.middle
 //desktop font size
 font-size 16pt

//src/styles/app/m-content.styl
.middle
 //mobile font size
 font-size 8pt

Grunt in Action

[88]

Our src/styles/app/content.styl and src/styles/app/m-content.styl files
contain our desktop and mobile overrides for our content section. Now, when we
build our styles with grunt stylus, our build/css/app.css file should contain the
following code:

html,
body {
 margin: 0;
 padding: 0;
}
.content .middle {
 font-size: 16pt;
}
@media (max-width: 768px) {
 .content .middle {
 font-size: 8pt;
 }
}

Also, using @import, we can include third party CSS frameworks such as Bootstrap
or Foundation. We can inline CSS files wherever we desire by setting the include
css option to true and by @importing a CSS file instead of a Stylus file. For example
at the top of our app.styl we could do @import "vendor/bootstrap.css".

Step 4 – optimizing our build files
At this point, we should have a structured set of source files and can now perform
additional transformations on the result. Let's start by downloading the plugins from
npm and saving them in our package.json file:

$ npm install --save-dev grunt-contrib-uglify grunt-contrib-cssmin grunt-
contrib-htmlmin

Then, at the top of our Gruntfile.js file, where we have loaded our other Grunt
plugins, we will load our new additions with:

grunt.loadNpmTasks("grunt-contrib-uglify");
grunt.loadNpmTasks("grunt-contrib-cssmin");
grunt.loadNpmTasks("grunt-contrib-htmlmin");

Chapter 4

[89]

Scripts
We will start by compressing our scripts. In this example, we use the grunt-
contrib-uglify plugin (http://gswg.io#grunt-contrib-uglify), which is
a wrapper around the popular UglifyJS library (http://gswg.io#uglifyjs).
Now we have loaded the plugin, which provides the uglify task, we just need to
configure it:

uglify: {
 compress: {
 src: "<%= coffee.build.dest %>",
 dest: "<%= coffee.build.dest %>"
 }
}

Here, inside the uglify property, we have made a compress target, which has src
and dest set to the same file. Instead of entering the actual filename, we are making
use of Grunt templates to retrieve the value at the given configuration path (coffee.
build.dest), which in this case, resolves to build/js/app.js. Grunt templates
make it easy to have a single source of truth within our configuration. Therefore, if
we ever want to change the file path of our JavaScript, we only need to change one
configuration entry.

Since we have set the source and destination to the same file path, in effect, we are
overwriting our JavaScript with the compressed version of itself. However, if we
were writing a JavaScript library instead of a web application, we'd most likely want
to compress our app.js file into an app.min.js file, so its users could download an
uncompressed and a compressed version.

Review the Grunt templates in Chapter 2, Setting Up Grunt, or visit
the Grunt website at http://gswg.io#grunt-templates.

Running this uglify task with this basic configuration should result in the following
app.js file:

(function(){var a,b;a=function(a,b){return a+b},b=function(a,b){return
a-b},alert(a(7,b(4,1)))}).call(this);

Grunt in Action

[90]

Generally, this will suffice, however, UglifyJS also offers advanced features. For
example, in some cases, we might have portions of code that are only used during
development. We could remove this unnecessary code with the following technique.
By defining a DEBUG variable and place our debug-related code inside an if block
as follows:

 if(DEBUG) {
 //do things here
 }

Then, if we used the following options object inside our uglify configuration as
follows:

options: {
 compress: {
 global_defs: {
 "DEBUG": false
 },
 dead_code: true
 }
}

This would result in UglifyJS locking the value of DEBUG to false and also
to remove the inaccessible code (dead code). Therefore, in addition to
compressing code, we also have the ability to completely remove code from
our builds. The documentation for this feature can be found at
http://gswg.io#grunt-contrib-uglify-conditional-compilation.

Styles
To compress our styles, we use the grunt-contrib-cssmin plugin
(http://gswg.io#grunt-contrib-cssmin), which is a wrapper around the
clean-css library (http://gswg.io#clean-css). Since we have installed this
plugin, we just need to include the cssmin task configuration:

cssmin: {
 compress: {
 src: "<%= stylus.build.dest %>",
 dest: "<%= stylus.build.dest %>"
 }
}

Chapter 4

[91]

Similar to our scripts configuration, we can see that the only real difference is that
we point to the stylus task's output instead of pointing to the coffee task's output.
When we run grunt cssmin, our css/app.css file should be modified to the
following one:

html,body{margin:0;padding:0}.content .middle{font-size:16pt}@media
(max-width:768px){.content .middle{font-size:8pt}}

Views
Finally, to compress our views, we will use the grunt-contrib-htmlmin plugin
(http://gswg.io#grunt-contrib-htmlmin), which is a wrapper around the html-
minifier library (http://gswg.io#html-minifier). The htmlmin configuration
has a little more to it: since its compression options are disabled by default, we need
to enable the rules we wish to use:

htmlmin: {
 options: {
 removeComments: true,
 collapseWhitespace: true,
 collapseBooleanAttributes: true,
 removeAttributeQuotes: true,
 removeRedundantAttributes: true,
 removeOptionalTags: true
 },
 compress: {
 src: "<%= jade.build.dest %>",
 dest: "<%= jade.build.dest %>"
 }
}

Now our htmlmin task is configured, we can run it with grunt htmlmin, which
should modify our build/app.html to the following:

<!DOCTYPE html><html><head><link rel=stylesheet href=css/app.
css><body><section class=header>this is the amazing header
section</section><section class=content><div class=top>some content
with this on top</div><div class=middle>and this in the middle</
div><div class=bottom>and this on the bottom</div></section><section
class=footer>and this is the footer, with an awesome copyright symbol
with the year next to it - © 2013</section><script src=js/app.
js></script>

Grunt in Action

[92]

In addition to the GitHub repository, we can read more about
html-minifier on Juriy "Kangax" Zaytsev's blog at
http://gswg.io#experimenting-with-html-minifier.

Step 5 – tasks and options
Currently, we have the tasks our plugins have provided and our default task,
which runs our coffee, stylus, and jade tasks. We could extend our default task
to include our optimizer tasks, but this would make debugging harder as our source
code would always be minified. We can solve this programmatic creation of task
aliases as follows:

// Initialize environment
var env = grunt.option('env') || 'dev';

// Environment specific tasks
if(env === 'prod') {
 grunt.registerTask('scripts', ['coffee', 'uglify']);
 grunt.registerTask('styles', ['stylus', 'cssmin']);
 grunt.registerTask('views', ['jade', 'htmlmin']);
} else {
 grunt.registerTask('scripts', ['coffee']);
 grunt.registerTask('styles', ['stylus']);
 grunt.registerTask('views', ['jade']);
}

// Define the default task
grunt.registerTask('default', ['scripts','styles','views']);

Here, we are initializing our current environment with a default value of
development (dev), and then we are grouping our existing tasks into our three
groups: scripts, styles, and views. If the value of our environment option (env)
is set to production (prod), we will include our optimizer tasks for each group;
otherwise it will run only the build tasks.

Instead of defining different sets of aliases, we could achieve the same result by
defining custom tasks for scripts, styles, and views, and then within the task
function, we could perform our environment check and programmatically run the
tasks we desire. For example, we could write the task function for our scripts like:

grunt.registerTask('scripts', function() {
 grunt.task.run ('coffee');

Chapter 4

[93]

 if(env === 'prod') {
 grunt.task.run('uglify');
 }
});

As our build grows, it may become beneficial to use a custom task function.
Nevertheless, in this instance, we will use the former method for simplicity.

Also, we are using the concept of environments. For example, while debugging our
single-page application on our local machine, we will want to include the complete
source and also want our debug code enabled. Then, when we are ready to test, we
most likely will want to optimize our source to simulate production, but keep our
debug code enabled, so our testers can report bugs with ease.

Finally, when the time comes to deploy our single-page application to production,
we will still want to optimize our code, but also disable our debug code so our
users don't see cryptic error messages. Therefore, instead of using options such as
--optimize and --enable-debug and including them or not including them for
various builds, we will simply use an --env option and modify our build based on
the value of the environment.

Unfortunately we can't use --debug as a run-time option
as it's already used by Grunt to enable task debugging
during our builds.

Let's give our new, environment-driven build a try:

$ grunt

Running "coffee:build" (coffee) task

File build/js/app.js created.

Running "stylus:build" (stylus) task

File build/css/app.css created.

Running "jade:build" (jade) task

File "build/app.html" created.

Done, without errors.

Grunt in Action

[94]

Here, we can see that our build is the same by default, however, when we set our
environment to production by including the command-line argument --env=prod,
we should see the following result:

$ grunt --env=prod

Running "coffee:build" (coffee) task

File build/js/app.js created.

Running "uglify:compress" (uglify) task

File "build/js/app.js" created.

Running "stylus:build" (stylus) task

File build/css/app.css created.

Running "cssmin:compress" (cssmin) task

File build/css/app.css created.

Running "jade:build" (jade) task

File "build/app.html" created.

Running "htmlmin:compress" (htmlmin) task

File build/app.html created.

Done, without errors.

Step 6 – improving development flow
As developers, in order to stay productive during the day, it's important to be "in the
zone". In psychology, this concept is known as flow (http://gswg.io#flow); many
people write about it (http://gswg.io#blog-on-flow) and many people talk
about it (http://gswg.io#talk-on-flow). For instance, instead of editing our code
and going back to the command line and running the appropriate tasks, we can
make use of the watch task provided by the grunt-contrib-watch plugin
(http://gswg.io#grunt-contrib-watch). The watch task allows us to specify a set
of files to "watch" and a set of tasks to run when they change. Let's get started by
installing the grunt-contrib-watch plugin:

$ npm install --save-dev grunt-contrib-watch

Chapter 4

[95]

Once that's completed, we will register the watch task by loading the grunt-
contrib-watch plugin with the following code:

 grunt.loadNpmTasks("grunt-contrib-watch");

We will add this line below our other calls to grunt.loadNpmTasks. Next, we
configure the watch task to run our scripts task whenever we change one of our
script files (a CoffeeScript file in this instance), and then the equivalent for styles
(Stylus files) and views (Jade files):

watch: {
 scripts: {
 files: "src/scripts/**/*.coffee",
 tasks: "scripts"
 },
 styles: {
 files: "src/styles/**/*.styl",
 tasks: "styles"
 },
 views: {
 files: "src/views/**/*.jade",
 tasks: "views"
 }
}

In addition to this, we extend our default task to include the watch task:

grunt.registerTask('build', ['scripts','styles','views']);
// Define the default task
grunt.registerTask('default', ['build','watch']);

Notice that we moved the original three tasks into their own build task. Although
this does change the build's behavior, it makes it more comprehensible. By default,
we will build then watch. Our build is now ready; let's give it a try:

$ grunt

Running "coffee:build" (coffee) task

File build/js/app.js created.

Running "stylus:build" (stylus) task

File build/css/app.css created.

Running "jade:build" (jade) task

File "build/app.html" created.

Grunt in Action

[96]

Running "watch" task

Waiting...

OK

>> File "src/views/app/footer.jade" changed.

Running "jade:build" (jade) task

File "build/app.html" created.

Done, without errors.

Completed in 1.074s

Waiting...

OK

>> File "src/scripts/app.coffee" changed.

Running "coffee:build" (coffee) task

File build/js/app.js created.

Done, without errors.

Completed in 0.782s

Waiting...

First, we ran grunt. This ran our usual build followed by our new watch task. This
caused build to wait for file changes. Then, we saved our src/views/app/footer.
jade file and our watch task detected this change and ran the views task. Finally, we
edited src/scripts/app.coffee file and our watch task similarly ran the scripts
task in response.

So, instead of returning to the command line every few minutes, we can stay inside
our code editor and preview it with a browser window alongside.

We can take this even further by automating browser refreshes on
file changes with LiveReload. The grunt-contrib-watch plugin
provides this functionality via the livereload option
(http://gswg.io#watch-livereload), then instead of adding the
LiveReload script to all of our pages, we can simply use the LiveReload
Chrome extension (http://gswg.io#chrome-livereload).

Chapter 4

[97]

Step 7 – deploying our application
At this point, we are able to build and optionally optimize our source files into three
files build/js/app.js, build/css/app.css, and build/index.html. Now we
are ready to deploy our single-page application. In this example, we deploy to
Amazon's Simple Storage Service (S3) using the grunt-aws Grunt plugin
(http://gswg.io#grunt-aws). First, we install the plugin as follows:

$ npm install --save-dev grunt-aws

We now load the plugin, which will provide the s3 task:

 grunt.loadNpmTasks("grunt-aws");

Next, similar to a previous example in Chapter 1, Introducing Grunt, on deployment,
we configure the s3 task to deploy the entire contents of our build to a jpillora-
app-<env> bucket, where env is set to the current environment:

aws: grunt.file.readJSON("aws.json"),
s3: {
 options: {
 accessKeyId: "<%= aws.accessKeyId %>",
 secretAccessKey: "<%= aws.secretAccessKey %>",
 bucket: "jpillora-app-"+env
 },
 build: {
 cwd: "build/",
 src: "**"
 }
}

Before defining our s3 property, we define an aws property and initialize it with our
Amazon Web Services (AWS) credentials, which are loaded from an external JSON
file: aws.json. Inside our s3 configuration, we are setting the bucket option based
on the environment (env) variable set in the previous section. Next, we are creating a
target called build, which represents the deployment of our build. Our build target
is defining a set of source (src) files to upload; however, we are using the build/
directory as our current working directory (cwd). In effect, we are uploading the
contents of the build/ directory into the root directory of our bucket. Finally, we
create a deploy task that aliases build and then s3; this way we can always be sure
we are deploying the current build:

grunt.registerTask('deploy',['build', 's3']);

Grunt in Action

[98]

In practice, we will most likely want to deploy our application to a staging (or
testing) environment to allow our Quality assurance (QA) team to verify that our
latest deployment functions as expected. Therefore, once we create our bucket, we
can use grunt deploy --env=test to deploy our single-page application to our
jpillora-app-test bucket:

$ grunt deploy --env=test

Running "coffee:build" (coffee) task…

Running "stylus:build" (stylus) task…

Running "jade:build" (jade) task…

Running "s3:build" (s3) task

Retrieving list of existing objects...

>> Put 'app.html'

>> Put 'css/app.css'

>> Put 'js/app.js'

>> Put 3 files

Currently, setting our environment (env) to test has no effect except for
the destination bucket, so when we visit this recent deployment at
http://gswg.io#jpillora-app-test, we should see our default build.
However, we could vary our build steps for test. For example, we could
enable error reporting or add a testing console into the page for the QA team.
Once we are given the green light to deploy to production, we will simply use
grunt deploy --env=prod, which should yield the following result:

$ grunt deploy --env=prod

Running "coffee:build" (coffee) task…

Running "uglify:compress" (uglify) task…

Running "stylus:build" (stylus) task…

Running "cssmin:compress" (cssmin) task…

Running "jade:build" (jade) task…

Running "htmlmin:compress" (htmlmin) task…

Running "s3:build" (s3) task

Retrieving list of existing objects...

>> Put 'app.html'

>> Put 'js/app.js'

>> Put 'css/app.css'

>> Put 3 files

Chapter 4

[99]

This time, we built and optimized our source code, and then most importantly,
uploaded the result into the production bucket, which can be viewed at
http://gswg.io#jpillora-app-prod. We can verify this by visiting both pages
and ensuring test is just our usual build, whereas prod should also be optimized.

The grunt-aws plugin provides gzip compression before each upload and caches
the hash of each file so bandwidth is not wasted uploading the same file multiple
times. Also, grunt-aws allows us to change the region, set custom headers, and
much more.

Summary
In conclusion, we should now be able to set up a new Grunt environment from the
start, install and load a set of desired plugins, then configure them to achieve a given
result. This chapter uses the concept of a single-page application; however, these
same concepts could be applied to a multipage website. In the next chapter, we will
briefly cover some advanced topics directly and indirectly related to Grunt, such as
Testing with Grunt, Advanced Grunt, Advanced JavaScript, and Development Tools.

Advanced Grunt

Up until now, this book has covered the core concepts required to effectively use
Grunt. In this chapter, we shall blaze through some extra ideas, plugins, and tools
to take our front-end development to the next level. We will get a sneak peak into
Testing with Grunt, Continuous integration with Grunt, External tasks, and Grunt plugins.
Finally, we will review a series of JavaScript resources and developer tools.

Testing with Grunt
Performing automated tests is another major use case for Grunt. Let us say our
build process involves compiling, analyzing, optimizing, and then deploying our
application. This sequential nature of Grunt is useful because if any link in the above
process fails, Grunt will not proceed, that is, any subsequent tasks will not be run.
This is important because it prevents our analysis tasks from running when our build
tasks fail to create the files that we need to analyze. However, static analysis won't
spot logical errors in our build files, therefore we may still be deploying a buggy
application despite a successful build. We can work towards preventing this by
including a test suite to our application –placing our new test task before our deploy
task. Even if we have a Quality Assurance (QA) team, which manually tests our
application, using a test suite can save QA iterations by quickly catching logic errors.

A test suite is also useful for trapping regression errors. Our QA team might spend
weeks testing our application, however, after a number of development iterations
without a test suite, they are forced to go back and perform the same tests again to
ensure our new code has not broken old functionality. Therefore, our whole team's
development cycle can be improved by implementing effective automated tests.

Advanced Grunt

[102]

There are a wide variety of JavaScript testing frameworks available, however, the
two most popular frameworks are Jasmine and Mocha. Mocha
(http://gswg.io#mocha) was written by TJ Holowaychuk, the prolific developer
who also brought us Jade, Stylus, and Express. Mocha has one of the widest feature
sets across all testing frameworks, with first class support for asynchronous APIs.
Below is a simple test written using Mocha's Behavior Driven Design (BDD) syntax:

//Code Example 01-testing
// test/array-tests.js
describe('Array', function(){
 describe('#indexOf()', function(){
 it('should return -1 when not in the array', function(){
 expect([1,2,3].indexOf(5)).to.equal(-1);
 expect([1,2,3].indexOf(0)).to.equal(-1);
 });
 });
});

Here we can see the BDD syntax entails a describe and an it function:

• describe is used to create a named container (or namespace) for individual
tests. These containers are conveyed when we run the test suite to help us see
what kinds of tests are passing and failing.

• it is used to define a test. This function accepts a string of our choice, which
states one behavior that should hold true, for example, it("should do foo
and bar", …).

In addition to Mocha, we have included the Chai assertion library
(http://gswg.io#chai) which allows us to make use of its expect function—a
function used to perform assertions and throw appropriate errors for Mocha to catch.

In Code Example 01-testing, we are using the Grunt plugin grunt-mocha
(http://gswg.io#grunt-mocha) to run Mocha in a headless browser called
PhantomJS (http://gswg.io#phantomjs). PhantomJS is a Web browser without
the user interface. This API–only browser is programmable, which allows it to
communicate with Grunt via a plugin. Let us give Code Example 01-testing a try:

$ grunt
Running "mocha:test" (mocha) task
Testing: test/runner.html

 1 test complete (2 ms)

>> 1 passed! (0.00s)

Done, without errors.

Chapter 5

[103]

We can see grunt-mocha is testing our test/runner.html, and we have a reference
to our simple test/array-tests.js file, which provides one test case. When run,
we should see green or red dots for each test passed or failed. In this example, we
have one green dot for our single passed test case. However, if we open test/
runner.html in a Web browser, instead of Grunt (PhantomJS), we should see
Mocha's built-in test reporter. An example of Mocha's browser test runner can be
found at http://gswg.io#mocha-browser-example.

Since Grunt is mainly used for front-end Web development, we have used Mocha
to test browser JavaScript code. However, Mocha can also be used to test Node.js
JavaScript code.

Effective testing methods in JavaScript is a large topic, so this short introduction
should gives us an idea of how tests look, and how we can use Grunt to integrate a
test step into our builds.

Continuous integration with Grunt
To put it simply, a continuous integration (or CI) server is a dedicated machine
with the sole purpose of running builds, that is, it will continuously integrate the
new build into a given system. Generally, CI servers work by creating an HTTP
server and listening for data to be sent to it. Then, HTTP clients can post data to this
server, triggering the server to start the build. For instance, you could tell GitHub to
trigger your CI server on every commit (http://gswg.io#github-webhooks), then
use Grunt on your CI to continuously perform tasks (such as analyzing, compiling,
testing, and deploying your build) as new code arrives. When set up correctly, the
act of committing to the main branch in your repository could analyze, compile, test,
and deploy your application. This streamlined approach to deployment is highly
valuable as it reduces development iteration time. See this Wikipedia page for a list
of continuous integration servers http://gswg.io#ci-list.

External tasks
In many instances, our Gruntfile.js file can become quite large and complicated,
especially when we start including our own custom tasks into the mix. Grunt
provides the means to split our custom tasks into their own individual files, thereby
reducing the complexity of our Gruntfile.js and increasing reusability, since this
new task file could also be used in other Grunt projects. In Chapter 3, Using Grunt, we
learnt how to use grunt.registerTask to create our own custom tasks; however, to
move these calls to registerTask into another file, we will need a reference to the
grunt object (since grunt is passed into our Gruntfile.js).

Advanced Grunt

[104]

This is exactly what the grunt.loadTasks function does: it is called with a directory
path as the argument, then runs every JavaScript file inside the given directory as
if it were a "mini" Gruntfile.js file (also passing it the current grunt object). The
following example demonstrates this:

//Code example 02-external-tasks
// Gruntfile.js
module.exports = function(grunt) {

 grunt.loadTasks("./tasks");

 grunt.initConfig({
 foo: {
 bar: 42
 }
 });

 grunt.registerTask("default", ["foo"]);
};

// tasks/foo.js
module.exports =function(grunt) {

 grunt.registerTask("foo", function() {
 console.log("foo says bar is: " + grunt.config("foo.bar"));
 });

};

In the example above, we are defining the foo task in a foo.js file, inside a tasks
directory. In addition to foo.js, we could include as many other JavaScript files as
we like and perform anything that we could do in our Gruntfile.js.

Grunt plugins
With the concepts from the section above, it becomes easy to understand how Grunt
plugins work. Grunt plugins are just normal Node.js modules (that is, any directory
with a package.json file), with the addition that they contain a tasks directory with
JavaScript files to load. As we have seen throughout this book, when we wish to load
the tasks provided by a Grunt plugin, we call the grunt.loadNpmTasks function
with the name of the module. This loadNpmTasks function is very similar to the
loadTasks function described previously, however, instead of using a directory to
find JavaScript files, it uses the name of a module and then looks inside that module
for a tasks folder. Therefore, the following two lines are equivalent:

//Code example 03-load-plugin
grunt.loadNpmTasks("grunt-contrib-copy");
grunt.loadTasks("./node_modules/grunt-contrib-copy/tasks");

Chapter 5

[105]

Now, with this in mind, if we want to create and share our own tasks, we can publish
them as a plugin. All we need to do is:

1. Write a custom task with registerTask.
2. Place it in a file inside a tasks directory.
3. Create a new package.json file alongside this tasks directory.
4. Finally, publish it to npm with npm publish.

In short, this is all we need to do to share a Grunt plugin publicly. However, we will
go through each step carefully and add a few extra steps to make it more accessible
for others.

First, let us write our custom task and place it in a new tasks directory:

//Code Example 04-sample-plugin
// tasks/gswg.js
module.exports = function(grunt) {

 grunt.registerTask("gswg", function() {
 grunt.log.ok("Hello, you have successfully run
 the 'gswg' task.");
 });

};

We will notice that we have named our new task file gswg.js (since it is providing
the gswg task), though it looks like a Gruntfile.js. As mentioned previously,
loadTasks will run each file as if it were a "mini" Gruntfile.js – allowing us to
extend the Gruntfile.js that called loadTasks.

Grunt provides an API for creating various types of log messages.
The Grunt API documentation contains information on grunt.
log, which can be found at http://gswg.io#grunt-log.

Next, we will create our package.json. We can create it manually or with npm init.
In order for npm to accept our module, it requires two fields: name and version. So
in this example, we will give it the name of grunt-gswg and we will give it the initial
version of 0.1.0. Also note that we have prefixed our module name with grunt- so
that Grunt users can recognize this as a Grunt plugin.

Advanced Grunt

[106]

In addition to these two required fields, we will also tell npm that our module
is a plugin (or extension) for the grunt module using the peerDependencies
property. Although we could use the dependencies property, doing so would
cause every Grunt plugin to each install its own copy of the grunt module. The
peerDependencies property solves this by using the parent module's node_modules
directory, instead of the current module's node_modules directory.

To allow our module to be seen as a Grunt plugin, we will also need to add a
keywords array property and include "gruntplugin". The keywords array lists
search terms that help npm users find modules. For instance, if we made a Grunt
plugin to create a copy of a database, we might also include "copy", "clone",
"replicate", "database", and "db". This will allow users to find our plugin even if
they use an assortment of equivalent search terms.

To finalize our package.json, we will also include:

• An author property, containing our contact information. In this case, I have
used "Jaime Pillora <gswg@jpillora.com>".

• A license property, specifying the software license that we wish to apply to
our module. In this case, we will use "MIT", which states that our module is
free for everyone to use in any way.

• A homepage property, providing the URL to where our users can find out
more about our module.

At this point, our package.json file now should look like:

{
 "name": "grunt-gswg",
 "version": "0.1.0",
 "author": "Jaime Pillora <gswg@jpillora.com>",
 "homepage": "https://github.com/jpillora/gswg-
 examples/tree/master/5/04-sample-plugin",
 "peerDependencies": {
 "grunt": "~0.4.0"
 },
 "keywords": [
 "gruntplugin",
 "example",
 "sample",
 "gswg"
],
 "license": "MIT"
}

Chapter 5

[107]

Now that we have our new gswg task and a valid package.json file, we are able to
publish to npm. Before we do, however, let us do some housekeeping. There is no
point in publishing code for everyone to use if there is no documentation informing
them of how to use it. So let us create a README.md file, which will inform users of
the tasks this plugin provides, and the options that each task has available. This
file is in the Markdown file format, which we can read more about here:
http://gswg.io#markdown. We can find the README.md file for this example in
the Code Example 04-sample-plugin directory.

At this point, we have created enough code to warrant a backup. Let us place our
code into a version control system, like Git. It is important to have a navigable
history of our plugin's modification history so we can restore old code if it gets
deleted, and so when we would like to collaborate with others, there is the ability to
branch and merge our code. In this example, let us commit what we have so far into
GitHub. To create a new Git repository on GitHub, we will need to:

• Create a GitHub (http://gswg.io#github) account and sign in.
• Click the Create New Repository icon in the top-right hand corner.
• Use the plugin name as the repository name, and provide a short description,

and click Create Repository.
• We will be taken to our new empty repository, where we will find

instructions on how to set up this repository locally, and make our
first commit.

To learn more about using Git, and how to make the most of it,
visit this page: http://gswg.io#git-resources.

Before we publish our plugin for general use, we want be sure that it works. As
mentioned previously, it is best to create an automated test suite, which confirms
our desired functionality is indeed functional. For this sample plugin, however, we
will just use a dummy Gruntfile.js file and manually confirm that it works. Our
plugin's users can also view this file as an example of our plugin in action.

We will start by creating a Gruntfile.js inside an example directory:

//Code Example 04-sample-plugin
// example/Gruntfile.js
module.exports = function(grunt) {

 grunt.loadTasks("../tasks");

 grunt.registerTask("default", ["gswg"]);

};

Advanced Grunt

[108]

Here, we are replicating loadNpmTasks by using loadTasks and directly referencing
our tasks folder. Before we can run this Gruntfile.js, however, it will need the
grunt module installed. Since we are using the peerDependencies property, we will
also need to use the devDependencies property to tell npm to install grunt for local
testing. So we will first use the following command:

$ npm install --save-dev grunt

Then we can run our dummy Gruntfile.js with:

$ cd example

$ grunt

Running "gswg" task

>> Hello, you have successfully run the 'gswg' task.

Done, without errors.

As we can see, our gswg task has run successfully and we are now ready to publish
it. Now let us login to npm with npm adduser. This command is both login and
account creation. It will give us three prompts: name, email, and password. Once we
are logged in, we can enter npm publish and we should see:

$ npm publish

npm http PUT https://registry.npmjs.org/grunt-gswg

npm http 201 https://registry.npmjs.org/grunt-gswg

npm http GET https://registry.npmjs.org/grunt-gswg

npm http 200 https://registry.npmjs.org/grunt-gswg

npm http PUT https://registry.npmjs.org/grunt-gswg/-/grunt-gswg-
0.1.0.tgz/-rev/1-0d89dbcc01a9b9d154a7f43bc103c411

npm http 201 https://registry.npmjs.org/grunt-gswg/-/grunt-gswg-
0.1.0.tgz/-rev/1-0d89dbcc01a9b9d154a7f43bc103c411

npm http PUT https://registry.npmjs.org/grunt-gswg/0.1.0/-tag/latest

npm http 201 https://registry.npmjs.org/grunt-gswg/0.1.0/-tag/latest

+ grunt-gswg@0.1.0

This sample plugin has now been published to npm, which we can confirm with the
npm info grunt-gswg command.

Useful plugins
Below is a list of Grunt plugins which, though not absolutely necessary, are very
useful at times:

Chapter 5

[109]

• Running Grunt tasks concurrently: http://gswg.io#grunt-concurrent with
the grunt-concurrent plugin we can create groups of tasks which will run
independently of each other, resulting in a faster build.

• Load all Grunt plugins automatically: http://gswg.io#load-grunt-tasks
with the load-grunt-tasks plugin, you can replace all occurrences of
grunt.loadNpmTask(…); with the single line, require('load-grunt-
tasks')(grunt); . This function searches through our package.json's
devDependency field and automatically calls grunt.loadNpmTask for each
module prefixed with grunt.

• Run a basic fileserver with Grunt: http://gswg.io#grunt-contrib-connect
in some cases, we will be building the frontend portion of a Web Application
or website without the backend serving our files. With the grunt-contrib-
connect plugin, we can run our own simple fileserver on the port of our
choice. This plugin works well with the grunt-contrib-watch plugin, as it
allows us to run our build and locally serve our newly built files at the same
time, all within Grunt.

JavaScript resources
The Web continues to evolve due to the forward march of standards and browsers.
As browsers introduce new features, we can see the browser becoming a pseudo
operating system, complete with access to hardware and the filesystem. When
deciding between a native desktop application and a web application, our uses
must be taken into consideration. With the universality and power of the browser,
combined with ease of access, the decision is a simple one. The future is in web
applications, driven by JavaScript. Here is a list of useful resources, for the JavaScript
journeyman, to the JavaScript elite:

• Mozilla Developer Network (Everyone) http://gswg.io#mdn the Mozilla
Developer Network is a great resource for all things in frontend
development. It contains documentation for nearly every browser API, for
both legacy and modern features.

• Code Academy (Beginner) http://gswg.io#codeacademy for an interactivity-
based JavaScript learning experience, Code Academy has built a web
application purely for teaching programming to prospective developers.

• Eloquent JavaScript (Beginner) http://gswg.io#eloquent-javascript
in addition to being a great introduction to the JavaScript programming
language, it is also a great book on programming in general. The author, Marijn
Haverbeke, has kindly published Eloquent JavaScript online in HTML format
under a Creative Commons license. Since the HTML version is displayed
in a browser (which has a JavaScript engine), he has included runnable and
editable code examples, which you can experiment with as you read.

Advanced Grunt

[110]

• JavaScript: The Good Parts (Intermediate) http://gswg.io#the-good-parts
regarded as "The JavaScript Bible" by some, The Good Parts discusses the
history of JavaScript, and the good and the bad parts of JavaScript. This book
is targeted at the intermediate developer who wishes to gain a deeper
knowledge of language. The author, Douglas Crockford, has also given some
great talks covering various topics from the book which can be found at
http://gswg.io#crockford-on-javascript.

• Learning JavaScript Design Patterns (Advanced)
http://gswg.io#javascript-design-patterns this Creative
Commons book by Addy Osmani is targeted at professional developers
wishing to improve their knowledge of design patterns and how they
can be applied to the JavaScript programming language.

Once you've been through these books and resources, you can visit
http://gswg.io#js-books, where an organized and sortable
list of JavaScript books is maintained.

Development tools
In this section, we will go over a selection of development tools, which directly and
indirectly relate to the average Grunt development workflow.

Author picks
In this section, I will cover the tools of my own development environment, and the
reasons why I think each is useful.

Mac OS X
In my opinion, Mac OS X (http://gswg.io#osx) provides the optimal development
environment. Mac OS X combines a Unix-based operating system with a brilliant
user experience, allowing you to make use of the vast number of Unix-based
development tools without having to worry about system level intricacies and
incompatibilities. Homebrew (http://gswg.io#brew) is an OS X alternative
to Linux's apt-get, providing a simple and easy-to-use method for installing
command-line tools.

Windows is useful if you develop on the Microsoft stack (.NET, C#, and so on).
However, Mac OS X is better suited to frontend development. Since, in addition to
Unix developer tools, there are many powerful graphics and design tools. If Mac OS
X were not available, my next choice would the popular flavor of Linux, Ubuntu.

Chapter 5

[111]

Sublime Text
Windows/Mac/Linux (http://gswg.io#sublime) for those who prefer the
lighter weight of a text editor opposed to an Integrated Development Environment
(IDE), Sublime Text is the perfect choice. Due to its vast extendibility, a
simple package manager was made called Package Control
(http://gswg.io#sublime-package-control). Useful packages include:

• SublimeLinter—a multi-language static analyzer "linter", which displays
code warnings inline as you type

• CoffeeScript/Jade/Stylus/nginx—an array of plugins providing syntax
highlighting for the respective languages

SourceTree
Windows/Mac (http://gswg.io#sourcetree)— a clean user interface for Git,
providing a faster means to visualize the current state of your Git repositories. Also,
these visualizations lower the learning curve for beginners by clearly conveying Git
concepts like branching and merging. SourceTree also includes Git Flow integration.
Git Flow helps to enforce Git best practice by guiding your Git workflow.

Chrome DevTools
Windows/Mac/Linux (http://gswg.io#chrome-devtools)—Google
Chrome's Developer Tools provides an extremely useful set of debugging,
inspection, and performance analysis tools for all aspects of frontend
development. There is also a Chrome DevTools extension called Grunt DevTools
(http://gswg.io#grunt-devtools), which adds a "Grunt" tab inside Chrome
DevTools, providing a user interface for Grunt.

Community picks
In this short section, we will review two popular tools used by the frontend
community.

WebStorm
JetBrains (http://gswg.io#webstorm), creators of IntelliJ and RubyMine, also have
an IDE for Web development. Similar to Sublime Text, there is a package manager
with many useful plugins available.

Advanced Grunt

[112]

Yeoman
Yeoman is a scaffolding tool (http://gswg.io#yeoman) used to generate projects
using the current industry best practice, and also a workflow that utilizes Grunt
and Twitter's Bower. The large community uptake of this tool has yielded code
generators for many frameworks. For instance, there are code generators for
constructing directives in Angular, models in Backbone, Ember components,
and much more.

Summary
In this chapter, we have taken a brief look at JavaScript testing and a Grunt plugin,
which we could use to integrate Mocha into our Grunt build. We have seen a short
introduction into Grunt plugins and how they work, as well as other useful plugins.
Finally, we covered JavaScript Resources and Development Tools not specifically
related to Grunt, however, when combined with Grunt, each tool may help to bring
our development cycle to the next level.

Thank you for purchasing Getting Started with Grunt: The JavaScript Task
Runner. I hope this introduction to Grunt was both informative and interesting

to read. You can find me on GitHub http://gswg.io#jpillora and you may
send comments and feedback to gswg@jpillora.com or tweet them at

@jpillora. I look forward to hearing your responses.

https://twitter.com/jpillora

Index

Symbols
--save-dev option 41
--save option 41

A
Abstract Syntax Tree (AST) 47
Application Programming Interface (API)

43
args function 56
async function 56, 62
asynchronous tasks 61, 62
author property 106

B
Behavior Driven Design (BDD) syntax

about 102
describe function 102
it function 102

build, creating
application, deploying 97, 98
build files, optimizing 88-90
configuration, initial 76-80
development flow, improving 94-96
directory setup, initial 76
source files, organizing 81-86
tasks 92, 93

build files
optimizing 88

build files, optimizing
scripts 89, 90
styles 90
views 91

build tool 7

C
Chrome DevTools 111
Code Academy 109
CoffeeScript

about 16, 17
Haml 20
Jade 17, 18
LESS 20
Sass 20
Stylus 19

command-line
about 62-64
runtime options 66, 67
task arguments 65, 66
task, help 67, 68

Command line interface (CLI) 37
CommonJS

about 31
sample code 32

concatenation 21-23
consoleCheck task 46
Content Management Systems (CMS) 75
continuous integration (CI) 103
curly 14
cwd 53

D
data 60
describe function 102
dest 53
dest property 51
devDependencies property 108
development tools

about 110

[116]

Author Picks 110
Chrome DevTools 111
community picks 111
Sublime Text 111
Yeoman 112

directory setup 76
directory structure 43, 44
Distributed Version Control System

(DVCS) 11
Don't Repeat Yourself (DRY) 9

E
echo command 76
Eloquent JavaScript 109
errorCount function 57
expand 53
expect function 102
exports 32
ext 53
external tasks 103, 104

F
files 60
files, configuring

about 49
source directory, mapping to destination

directory 52
source files, multiple set 51
source files, single set 51

filesSrc 60
File Transfer Protocol (FTP) 23-25
flags function 56
flatten 53
foo task 12, 65
fs.appendFileSync method 56

G
Git 11
GitHub 11
GitHub Gist 38
globbing 49
Grunt

about 7
benefits 10-13
Command line interface (CLI) 37

continuous integration (CI) 103
deployment 23
features 9
Gruntfile.js file, example 8
installation 29
plugins 104-108
project, setting up 38
testing with 101-103
uglify plugin 8
use cases 13-17

grunt-cli module 37, 38
grunt-concurrent plugin 109
grunt.config function 45
grunt.config.get function 45, 54
grunt-contrib- 72
grunt-contrib-uglify plugin 43
grunt-contrib-watch plugin 96
grunt.current.task object 56
grunt.current.task property 60
Grunt, deployment

about 23
File Transfer Protocol (FTP) 23-25
Secure File Transfer Protocol (SFTP) 25, 26
Simple Storage Service (S3) 27, 28

grunt.fail.fatal function 47
grunt.fail.warn function 47
Gruntfile.js file 42, 43, 104
grunt --help command 67
grunt.initConfig function 45
grunt.loadNpmTasks function 104
grunt-mocha 102
grunt object 43
grunt.option function 66, 67
grunt.registerTask 55
grunt.template.process function 54
gzip compression 99

H
Haml 20
homepage property 106

I
Immediately-Invoked Function Expression

(IIFE) 83
info grunt-gswg command 108
initConfig 8

[117]

Input/Output (I/O) task 29
installation, Grunt

about 29
modules 31-33
Node.js 29-31
npm 33

it function 102

J
Jade 17, 18
Jasmine 102
JavaScript

resources 109, 110
JavaScript Object Notation (JSON) 39
JSHint 14
jshint task 15
JSLint 13

K
knox npm module 74

L
LESS 20
license property 106
Linting 13-15
LiveReload 96
LiveReload Chrome extension 96
load-grunt-tasks plugin 109
loadNpmTasks 8
loadNpmTasks function 104
loadTasks 105

M
Mac OSX 110
Make build tool 8
minification 20, 21
Mocha 102
module 32
module.exports object 43
modules

about 31-34
finding 35
installing 36, 37

Mozilla Developer Network 109

multitasks
about 58-61
configuring 47, 48

multitasks, objects
data 60
files 60
fileSrc 60
target 60

N
nameArgs function 56
name function 56
Node.js

about 8, 29-31
installing 30, 31

node_modules directory 106
Node Package Manager. See npm
npm

about 33, 34
Frequently Asked Questions (FAQ) page 33
modules, finding 35
modules, installing 35-37

O
optimize option 66
options

configuring 48, 49
options function 57, 61
options object 48

P
package 33
package.json file 39-41
Package.json Validator tool 42
peerDependencies property 108
PhantomJS 102
plugins

about 104-107
grunt-concurrent plugin 109
load-grunt-tasks plugin 109

Q
Quality assurance (QA) team 98

[118]

R
rename 53
require function 32-34
requiresConfig function 56
requires function 56

S
Sass 20
Secure File Transfer Protocol (SFTP) 25, 26
Semantic Versioning Specification (Sem-

Ver) 39
Simple Storage Service (S3) 27, 28, 97
source files

organizing 81
scripts 81-83
styles 87, 88
views 85-87

SourceTree 111
src 53
src property 50
standard out (stdout) 76
static analysis 13-15
string property 47
Stylus 19
Sublime Text 111

T
target 60
task object, properties

args function 56
async function 56
errorCount function 57
flags function 56
nameArgs function 56
name function 56
options function 57
requiresConfig function 56
requires function 56

task runner 7
tasks

about 55
aliasing 57, 58
configuring 44-47
files, configuring 49

multitasks, configuring 47, 48
object 56
options, configuring 48
running 62
templates 53

tasks, running
automatically 70, 71
command line 62, 63
programmatically 69

templates 53, 54
third-party tasks

about 72
features 73, 74
official versus user tasks 72
popularity 73
searching for 72
stars 74

this.files array 59
this operator 57
transcompilation 16

U
uglify plugin 8
use cases

about 13
CoffeeScript 16, 17
static analysis 13-15
transcompilation 16

V
Version Control System (VCS) 44

W
watch task 70
WebStorm 111
WordPress 75

X
XMLHTTPRequest (XHR) 87

Y
Yeoman 112

Thank you for buying
Getting Started with Grunt: The JavaScript

Task Runner

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source license, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Instant Testing with QUnit
ISBN: 978-1-78328-217-3 Paperback: 64 pages

Employ QUnit to increase your efficiency when
testing JavaScript code

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results

2. Learn about cross-browser testing with QUnit

3. Learn how to use popular QUnit plugins and
develop your own plugins

4. Hands-on examples on all the essential
QUnit methods

JavaScript Testing
Beginner's Guide
ISBN: 978-1-84951-000-4 Paperback: 272 pages

Test and debug JavaScript the easy way

1. Learn different techniques to test JavaScript, no
matter how long or short your code might be

2. Discover the most important and free tools to
help make your debugging task less painful

3. Discover how to test user interfaces that are
controlled by JavaScript

4. Make use of free built-in browser features to
quickly find out why your JavaScript code is
not working, and most importantly, how to
debug it

Please check www.PacktPub.com for information on our titles

Chef Infrastructure Automation
Cookbook
ISBN: 978-1-84951-922-9 Paperback: 276 pages

Over 80 delicious recipes to automate your cloud and
server infrastructure with Chef

1. Configure, deploy, and scale your applications

2. Automate error prone and tedious manual tasks

3. Manage your servers on-site or in the cloud

4. Solve real world automation challenges with
task-based recipes

5. The book is filled with working code and easy-
to-follow, step-by-step instructions

Object-Oriented JavaScript

ISBN: 978-1-84969-312-7 Paperback: 382 pages

Learn everything you need to know about OOJS in
this comprehensive guide

1. Think in JavaScript

2. Make object-oriented programming accessible
and understandable to web developers

3. Apply design patterns to solve JavaScript
coding problems

4. Learn coding patterns that unleash the unique
power of the language

5. Write better and more maintainable
JavaScript code

Please check www.PacktPub.com for information on our titles

Second Edition

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Grunt
	What is Grunt?
	Why use Grunt?
	Benefits of Grunt
	Efficiency
	Consistency
	Effectiveness
	Community
	Flexibility

	Real-world use cases
	Static analysis or Linting
	Transcompilation
	CoffeeScript

	Minification
	Concatenation
	Deployment
	FTP
	SFTP
	S3

	Summary

	Chapter 2: Setting Up Grunt
	Installation
	Node.js
	Modules
	npm
	Finding modules
	Installing modules

	Grunt

	Project setup
	package.json
	Gruntfile.js
	Directory structure

	Configuring tasks
	Configuring multitasks
	Configuring options
	Configuring files
	Single set of source files
	Multiple sets of source files
	Mapping a source directory to destination directory

	Templates

	Summary

	Chapter 3: Using Grunt
	Creating your own tasks
	Tasks
	The task object
	Task aliasing

	Multitasks
	The multitask object

	Asynchronous tasks

	Running tasks
	Command-line
	Task arguments
	Runtime options
	Task help

	Programmatically
	Automatically

	Using third-party tasks
	Searching for tasks
	Official versus user tasks
	Task popularity
	Task features
	Task stars

	Summary

	Chapter 4: Grunt in Action
	Creating the build
	Step 1 – initial directory setup
	Step 2 – initial configuration
	Step 3 – organizing our source files
	Scripts
	Views
	Styles

	Step 4 – optimizing our build files
	Scripts
	Styles
	Views

	Step 5 – tasks and options
	Step 6 – improving development flow
	Step 7 – deploying our application

	Summary

	Chapter 5: Advanced Grunt
	Testing with Grunt
	Continuous integration with Grunt
	External tasks
	Grunt plugins
	Useful plugins

	JavaScript resources
	Development tools
	Author picks
	Mac OS X
	Sublime Text
	SourceTree
	Chrome DevTools

	Community picks
	WebStorm
	Yeoman

	Summary

	Index

