

Django for Professionals

Production websites with Python & Django

William S. Vincent

This book is for sale at http://leanpub.com/djangoforprofessionals

This version was published on 2019-11-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean

Publishing process. Lean Publishing is the act of publishing an in-progress ebook

using lightweight tools and many iterations to get reader feedback, pivot until you

have the right book and build traction once you do.

© 2018 - 2019 William S. Vincent

http://leanpub.com/djangoforprofessionals
http://leanpub.com/
http://leanpub.com/manifesto

Also ByWilliam S. Vincent
Django for Beginners

Django for APIs

http://leanpub.com/u/wsvincent
http://leanpub.com/djangoforbeginners
http://leanpub.com/djangoforapis

Contents

Introduction 1

Prerequisites 2

Book Structure 3

Book Layout 4

Text Editor 5

Conclusion 6

Chapter 1: Docker 7

What is Docker? 8

Containers vs. Virtual Environments 9

Install Docker 10

Docker Hello, World 11

Django Hello, World 13

Pages App 16

Images, Containers, and the Docker Host 21

Git 27

Conclusion 27

Chapter 2: PostgreSQL 29

Starting 30

Docker 31

Detached Mode 33

PostgreSQL 36

CONTENTS

Settings 39

Psycopg 41

New Database 43

Git 46

Conclusion 47

Chapter 3: Bookstore Project 48

Docker 51

PostgreSQL 53

Custom User Model 54

Custom User Forms 58

Custom User Admin 60

Superuser 61

Tests 63

Unit Tests 63

Git 66

Conclusion 67

Chapter 4: Pages App 68

Templates 69

URLs and Views 72

Tests 74

Testing Templates 77

Testing HTML 78

setUp Method 80

Resolve 82

Git 84

Conclusion 85

Chapter 5: User Registration 86

CONTENTS

Auth App 86

Auth URLs and Views 88

Homepage 89

Django Source Code 92

Log In 95

Redirects 97

Log Out 99

Sign Up 101

Tests 107

setUpTestData() 110

Git 111

Conclusion 111

Chapter 6: Static Assets 112

staticfiles app 112

STATIC_URL 112

STATICFILES_DIRS 113

STATIC_ROOT 113

STATICFILES_FINDERS 114

Static Directory 115

Images 117

JavaScript 120

collectstatic 122

Bootstrap 123

About Page 126

Django Crispy Forms 129

Tests 134

Git 136

Conclusion 136

CONTENTS

Chapter 7: Advanced User Registration 137

django-allauth 138

AUTHENTICATION_BACKENDS 139

EMAIL_BACKEND 141

ACCOUNT_LOGOUT_REDIRECT 142

URLs 144

Templates 145

Log In 147

Log Out 149

Sign Up 151

Admin 155

Email Only Login 158

Tests 162

Social 165

Git 165

Conclusion 166

Chapter 8: Environment Variables 167

.env files 168

SECRET_KEY 168

DEBUG 171

Databases 173

Git 173

Conclusion 174

Chapter 9: Email 175

Custom Confirmation Emails 175

Email Confirmation Page 182

Password Reset and Password Change 185

Email Service 185

CONTENTS

Git 186

Conclusion 187

Chapter 10: Books App 188

Models 189

Admin 191

URLs 195

Views 196

Templates 197

object_list 199

Individual Book Page 201

context_object_name 205

get_absolute_url 206

Primary Keys vs. IDs 208

Slugs vs. UUIDs 209

Navbar 213

Tests 214

Git 216

Conclusion 216

Chapter 11: Reviews App 218

Foreign Keys 218

Reviews model 220

Admin 222

Templates 227

Tests 229

Git 232

Conclusion 232

Chapter 12: File/Image Uploads 234

CONTENTS

Media Files 234

Models 236

Admin 239

Template 241

Next Steps 245

Git 245

Conclusion 246

Chapter 13: Permissions 247

Logged-In Users Only 247

Permissions 249

Custom Permissions 252

User Permissions 253

PermissionRequiredMixin 255

Groups & UserPassesTestMixin 258

Tests 258

Git 262

Conclusion 262

Chapter 14: Orders with Stripe 263

Payments Flow 264

Orders app 264

Stripe 269

Publishable & Secret Keys 273

Stripe Checkout 275

Charges 281

Stripe + Permissions 285

Templates 287

Tests 289

Git 290

CONTENTS

Conclusion 290

Chapter 15: Search 291

Search Results Page 291

Basic Filtering 294

Q Objects 296

Forms 297

Search Form 298

Git 301

Conclusion 302

Chapter 16: Performance 303

django-debug-toolbar 304

Analyzing Pages 308

select_related and prefetch_related 310

Caching 310

Indexes 313

django-extensions 315

Front-end Assets 315

Git 316

Conclusion 317

Chapter 17: Security 318

Social Engineering 318

Django updates 319

Deployment Checklist 320

Local vs. Production 320

DEBUG 323

ALLOWED HOSTS 323

Web Security 325

CONTENTS

SQL injection 325

XSS (Cross Site Scripting) 326

Cross-Site Request Forgery (CSRF) 327

Clickjacking Protection 329

HTTPS/SSL 330

HTTP Strict Transport Security (HSTS) 331

Secure Cookies 332

Admin Hardening 333

Git 335

Conclusion 335

Chapter 18: Deployment 337

PaaS vs IaaS 337

WhiteNoise 338

Gunicorn 341

dj-database-url 342

Heroku 343

Deploying with Docker 344

heroku.yml 345

Heroku Deployment 347

SECURE_PROXY_SSL_HEADER 354

Heroku Logs 355

Stripe Live Payments 356

Heroku Add-ons 357

PonyCheckup 358

Conclusion 360

Conclusion 361

Introduction
Welcome to Django for Professionals, a guide to building professional websites with

the Django web framework1. There is a massive gulf between building simple “toy

apps” that can be created and deployed quickly and what it takes to build a “produc-

tion-ready” web application suitable for deployment to thousands or even millions of

users. This book will show you to how to bridge that gap.

When you first install Django and create a new project the default settings are geared

towards fast local development. And this makes sense: there’s no need to add all the

additional features required of a large website until you know you need them. These

defaults include SQLite as the default database, a local web server, local static asset

hosting, built-in Usermodel, and DEBUGmode turned on.

But for a production projectmany, if notmost, of these settingsmust be reconfigured.

And even then there can be a frustrating lack of agreement among the experts. For

example, what’s the best production database to use?ManyDjango developers,myself

included, choose PostgreSQL. It is whatwewill use in this book. However an argument

can be made for MySQL depending on the project. It really does all depend on the

specific requirements of a project.

Rather than overwhelm the reader with the full array of choices available this book

shows one approach, grounded in current Django community best practices, for

building a professional website. The topics covered include using Docker for local

development and deployment, PostgreSQL, a customusermodel, robust user authen-

tication flow with email, comprehensive testing, environment variables, security and

performance improvements, and more.
1https://djangoproject.com

https://djangoproject.com/
https://djangoproject.com/

Introduction 2

By the end of this book you will have built a professional website and learned all

the necessary steps to do so. Whether you are starting a new project that hopes

to be as large as Instagram (currently the largest Django website in the world) or

making much-needed updates to an existing Django project, you will have the tools

and knowledge to do so.

Prerequisites

If you’re brand-new to either Django or web development, this is not the book for you.

The pace will be far too fast. While you could read along, copy all the code, and have

a working website at the end, I instead recommend starting with my book Django for

Beginners2. It starts with the very basics and progressively introduces concepts via

building five increasingly complex Django applications. After completing that book

you will be ready for success with this book.

I have also written a book on transforming Django websites into web APIs called

Django for APIs3. In practice most Django developers work in teams with other

developers and focus on back-end APIs, not full-stack web applications that require

dedicated JavaScript front-ends. Reading Django for APIs is therefore helpful to your

education as a Django developer, but not required before reading this book.

We will use Docker throughout most of this book but still rely, briefly, on having

Python 3, Django, and Pipenv installed locally. Git is also a necessary part of the

developer toolchain. If you need help on these steps you can find more details here4.

Finally we will be using the command line extensively in this book as well so if you

need a refresher on it, please see here5.
2https://djangoforbeginners.com
3https://djangoforapis.com
4https://djangoforbeginners.com/initial-setup/
5https://wsvincent.com/terminal-command-line-for-beginners/

https://djangoforbeginners.com/
https://djangoforbeginners.com/
https://djangoforapis.com/
https://djangoforbeginners.com/initial-setup/
https://wsvincent.com/terminal-command-line-for-beginners/
https://djangoforbeginners.com/
https://djangoforapis.com/
https://djangoforbeginners.com/initial-setup/
https://wsvincent.com/terminal-command-line-for-beginners/

Introduction 3

Book Structure

Chapter 1 starts with an introduction to Docker and explores how to “dockerize”

a traditional Django project. In Chapter 2 PostgreSQL is introduced, a production-

ready database that we can run locally within our Docker environment. Then Chapter

3 starts the main project in the book: an online Bookstore featuring a custom user

model, payments, search, image uploads, permissions, and a host of other goodies.

Chapter 4 focuses on building out a Pages app for a basic homepage along with robust

testing which is included with every new feature on the site. In Chapter 5 a complete

user registration flow is implemented from scratch using the built-in auth app for sign

up, log in, and log out. Chapter 6 introduces proper static asset configuration for CSS,

JavaScript, and images as well as the addition of Bootstrap for styling.

In Chapter 7 the focus shifts to advanced user registration, namely including email-

only log in and social authentication via the third-party django-allauth package.

Chapter 8 introduces environment variables, a key component of Twelve-Factor App

development and a best practice widely used in the web development community.

Rounding out the set up of our project, Chapter 9 focuses on email and adding a

dedicated third-party provider.

The structure of the first half of the book is intentional. When it comes time to build

your own Django projects, chances are you will be repeating many of the same steps

from Chapters 3-9. After all, every new project needs proper configuration, user

authentication, and environment variables. So treat these chapters as your detailed

explanation and guide. The second half of the book focuses on specific features

related to our Bookstore website.

Chapter 10 starts with building out the models, tests, and pages for our Bookstore via

a Books app. There is also a discussion of URLs and switching from id to a slug to a

UUID (Universally Unique IDentifier) in the URLs. Chapter 11 features the addition of

Introduction 4

reviews to our Bookstore and a discussion of foreign keys.

In Chapter 12 image-uploading is added and in Chapter 13 permissions are set across

the site to lock it down. An ordering option is added in Chapter 14 via Stripe. For any

site but especially e-commerce, search is a vital component and Chapter 15 walks

through building a form and increasingly complex search filters for the site.

In Chapter 16 the focus switches to performance optimizations including the addition

of django-debug-toolbar to inspect queries and templates, database indexes, front-

end assets, andmultiple built-in caching options.Chapter 17 covers security inDjango,

both the built-in options as well as additional configurations that can–and should–be

added for a production environment. The final section, Chapter 18, is on deployment,

the standard upgrades needed to migrate away from the Django web server, local

static file handling, and configuring ALLOWED_HOSTS.

The Conclusion touches upon various next steps to take with the project and addi-

tional Django best practices.

Book Layout

There are many code examples in this book, which are formatted as follows:

Code

This is Python code

print(Hello, World)

For brevity we will use dots ... to denote existing code that remains unchanged, for

example, in a function we are updating.

Introduction 5

Code

def make_my_website:

...

print("All done!")

We will also use the command line console frequently to execute commands, which

take the form of a $ prefix in traditional Unix style.

Command Line

$ echo "hello, world"

The result of this particular command in the next line will state:

Command Line

"hello, world"

Typically both a command and its output will be combined for brevity. The command

will always be prefaced by a $ and the output will not. For example, the command and

result above would be represented as follows:

Command Line

$ echo "hello, world"

hello, world

Text Editor

A modern text editor is a must-have part of any software developer’s toolkit. Among

other features they come with plug-ins that help format and correct errors in Python

code. Popular options include Black6, autopep87, and YAPF8.
6https://github.com/ambv/black
7https://github.com/hhatto/autopep8
8https://github.com/google/yapf

https://github.com/ambv/black
https://github.com/hhatto/autopep8
https://github.com/google/yapf
https://github.com/ambv/black
https://github.com/hhatto/autopep8
https://github.com/google/yapf

Introduction 6

Seasoned developers may still prefer using Vim9 or Emacs10, but newcomers and

increasingly experienced programmers as well prefer modern text editors such as

VSCode11, Atom12, Sublime Text13, or PyCharm14.

Conclusion

Django is an excellent choice for any developer who wants to build modern, robust

web applications with a minimal amount of code. It is popular, under active develop-

ment, and thoroughly battle-tested by the largest websites in the world.

Complete source code for the book can be found in the official Github repository15.

In the next chapterwe’ll learn how to configure any computer forDjango development

with Docker.
9https://www.vim.org/
10https://www.gnu.org/software/emacs/
11https://code.visualstudio.com/
12https://atom.io/
13https://www.sublimetext.com/
14https://www.jetbrains.com/pycharm/
15https://github.com/wsvincent/djangoforprofessionals

https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://github.com/wsvincent/djangoforprofessionals
https://www.vim.org/
https://www.gnu.org/software/emacs/
https://code.visualstudio.com/
https://atom.io/
https://www.sublimetext.com/
https://www.jetbrains.com/pycharm/
https://github.com/wsvincent/djangoforprofessionals

Chapter 1: Docker
Properly configuring a local development environment remains a steep challenge

despite all the other advances in modern programming. There are simply too many

variables: different computers, operating systems, versions of Django, virtual envi-

ronment options, and so on. When you add in the challenge of working in a team

environment where everyone needs to have the same set up the problem only

magnifies.

In recent years a solution has emerged: Docker16. Although only a few years old,

Docker has quickly become the default choice for many developers working on

production-level projects.

With Docker it’s finally possible to faithfully and dependably reproduce a production

environment locally, everything from the proper Python version to installing Django

and running additional services like a production-level database. This means it no

longermatter if you are on aMac,Windows, or Linux computer. Everything is running

within Docker itself.

Docker also makes collaboration in teams exponentially easier. Gone are the days of

sharing long, out-of-date README files for adding a new developer to a group project.

Instead with Docker you simply share two files–a Dockerfile and docker-compose.yml

file–and the developer can have confidence that their local development environment

is exactly the same as the rest of the team.

Docker is not a perfect technology. It is still relatively new, complex under-the-hood,

and under active development. But the promise that it aspires to–a consistent and
16https://www.docker.com/

https://www.docker.com/
https://www.docker.com/

Chapter 1: Docker 8

shareable developer environment, that can be run either locally on any computer or

deployed to any server–makes it a solid choice.

In this chapter we’ll learn a little bit more about Docker itself and “Dockerize” our first

Django project.

What is Docker?

Docker is a way to isolate an entire operating system via Linux containers which are

a type of virtualization17. Virtualization has its roots at the beginning of computer

science when large, expensive mainframe computers were the norm. How could

multiple programmers use the same single machine? The answer was virtualization

and specifically virtual machines18 which are complete copies of a computer system

from the operating system on up.

If you rent space on a cloud provider like Amazon Web Services (AWS)19 they are

typically not providing you with a dedicated piece of hardware. Instead you are

sharing one physical serverwith other clients. But because each client has their virtual

machine running on the server, it appears to the client as if they have their own server.

This technology is what makes it possible to quickly add or remove servers from a

cloud provider. It’s largely software behind the scenes, not actual hardware being

changed.

What’s the downside to a virtual machine? Size and speed. A typical guest operating

system can easily take up 700MB of size. So if one physical server supports three

virtual machines, that’s at least 2.1GB of disk space taken up alongwith separate needs

for CPU and memory resources.
17https://en.wikipedia.org/wiki/Virtualization
18https://en.wikipedia.org/wiki/Virtual_machine
19https://aws.amazon.com/

https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Virtual_machine
https://aws.amazon.com/
https://en.wikipedia.org/wiki/Virtualization
https://en.wikipedia.org/wiki/Virtual_machine
https://aws.amazon.com/

Chapter 1: Docker 9

Enter Docker. The key idea is that most computers rely on the same Linux20 operating

system, so what if we virtualized from the Linux layer up21 instead? Wouldn’t that

provide a lightweight, faster way to duplicate much of the same functionality? The

answer is yes. And in recent years Linux containers22 have becomewidely popular. For

most applications–especially web applications–a virtual machine provides far more

resources than are needed and a container is more than sufficient.

This, fundamentally, is what Docker is: a way to implement Linux containers!

An analogy we can use here is that of homes and apartments. Virtual Machines are

like homes: stand-alone buildings with their own infrastructure including plumbing

and heating, as well as a kitchen, bathrooms, bedrooms, and so on. Docker containers

are like apartments: they share common infrastructure like plumbing and heating, but

come in various sizes that match the exact needs of an owner.

Containers vs. Virtual Environments

As a Python programmer you should already familiar with the concept of virtual

environments, which are a way to isolate Python packages. Thanks to virtual envi-

ronments, one computer can run multiple projects locally. For example, Project A

might use Python 3.4 and Django 1.11 among other dependencies; whereas Project B

uses Python 3.7 and Django 2.2. By configuring a dedicated virtual environment for

each project we can manage these different software packages while not polluting

our global environment.

Confusingly there are multiple popular tools right now to implement virtual environ-

ments: everything from virtualenv to venv to Pipenv, but fundamentally they all do

the same thing.
20https://en.wikipedia.org/wiki/Linux
21https://en.wikipedia.org/wiki/Operating-system-level_virtualization
22https://en.wikipedia.org/wiki/Linux_containers

https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Linux_containers
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Operating-system-level_virtualization
https://en.wikipedia.org/wiki/Linux_containers

Chapter 1: Docker 10

The important distinction between virtual environments and Docker is that virtual

environments can only isolate Python packages. They cannot isolate non-Python

software like a PostgreSQL or MySQL database. And they still rely on a global,

system-level installation of Python (in other words, on your computer). The virtual

environment points to an existing Python installation; it does not contain Python

itself.

Linux containers go a step further and isolate the entire operating system, not just

the Python parts. In other words, we will install Python itself within Docker as well as

install and run a production-level database.

Docker itself is a complex topic and we won’t dive that deep into it in this book,

however understanding its background and key components is important. If you’d

like to learn more about it, I recommend the Dive into Docker video course23.

Install Docker

Ok, enough theory. Let’s start using Docker and Django together. The first step is to

sign up for a free account on Docker Hub24 and then install the Docker desktop app

on your local machine:

• Docker for Mac25

• Docker for Windows26

• Docker for Linux27

This downloadmight take some time to download as it is a big file! Feel free to stretch

your legs at this point.
23https://diveintodocker.com/ref-dfp
24https://hub.docker.com/signup
25https://hub.docker.com/editions/community/docker-ce-desktop-mac
26https://hub.docker.com/editions/community/docker-ce-desktop-windows
27https://docs.docker.com/install/

https://diveintodocker.com/ref-dfp
https://hub.docker.com/signup
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/install/
https://diveintodocker.com/ref-dfp
https://hub.docker.com/signup
https://hub.docker.com/editions/community/docker-ce-desktop-mac
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://docs.docker.com/install/

Chapter 1: Docker 11

OnceDocker is done installingwe can confirm the correct version is running by typing

the command docker --version on the command line. It should be at least version 18.

Command Line

$ docker --version

Docker version 19.03.2, build 6a30dfc

Docker is often used with an additional tool, Docker Compose28, to help automate

commands. Docker Compose is includedwithMac andWindows downloads but if you

are on Linux youwill need to add itmanually. You can do this by running the command

sudo pip install docker-compose after your Docker installation is complete.

Docker Hello, World

Docker ships with its own “Hello, World” image that is a helpful first step to run. On

the command line type docker run hello-world. This will download an official Docker

image and then run it within a container. We’ll discuss both images and containers in

a moment.

28https://docs.docker.com/compose/

https://docs.docker.com/compose/
https://docs.docker.com/compose/

Chapter 1: Docker 12

Command Line

$ docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

1b930d010525: Pull complete

Digest: sha256:b8ba256769a0ac28dd126d584e0a2011cd2877f3f76e093a7ae560f2a5301c00

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world" image from the Docker Hub.

(amd64)

3. The Docker daemon created a new container from that image which runs the

executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it

to your terminal.

To try something more ambitious, you can run an Ubuntu container with:

$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:

https://hub.docker.com/

For more examples and ideas, visit:

https://docs.docker.com/get-started/

Chapter 1: Docker 13

The command docker info lets us inspect Docker. It will contain a lot of output but

focus on the top lines which show we now have 1 container which is stopped and 1

image.

Command Line

$ docker info

Client:

Debug Mode: false

Server:

Containers: 1

Running: 0

Paused: 0

Stopped: 1

Images: 1

...

This means Docker is successfully installed and running.

Django Hello, World

Now we will create a Django “Hello, World” project that runs locally on our computer

and thenmove it entirely within Docker so you can see how all the pieces fit together.

The first step is to choose a location for our code. This can be anywhere on your

computer, but if you are on a Mac, an easy-to-find location is the Desktop. From the

command line navigate to the Desktop and create a code directory for all the code

examples in this book.

Chapter 1: Docker 14

Command Line

$ cd ~/Desktop

$ mkdir code && cd code

Then create a hello directory for this example and install Django using Pipenv which

creates both a Pipfile and a Pipfile.lock file. Activate the virtual environment with

the shell command.

Command Line

$ mkdir hello && cd hello

$ pipenv install django==2.2.7

$ pipenv shell

(hello) $

If you need help installing Pipenv or Python 3 you can find more details herea.
ahttps://djangoforbeginners.com/initial-setup/

Now we can use the startproject command to create a new Django project called

hello_project. Adding a period, ., at the end of the command is an optional step

but one many Django developers do. Without the period Django adds an additional

directory to the project; with the period it does not.

Finally use the migrate command to initialize the database and start the local web

server with the runserver command.

https://djangoforbeginners.com/initial-setup/
https://djangoforbeginners.com/initial-setup/

Chapter 1: Docker 15

Command Line

(hello) $ django-admin startproject hello_project .

(hello) $ python manage.py migrate

(hello) $ python manage.py runserver

Assuming everything worked correctly you should now be able to navigate to see the

Django Welcome page at http://127.0.0.1:8000/29 in your web browser.
29http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 1: Docker 16

Django welcome page

Pages App

Now we will make a simple homepage by creating a dedicated pages app for it. Stop

the local server by typing Control+c and then use the startapp command appending

our desired pages name.

Chapter 1: Docker 17

Command Line

(hello) $ python manage.py startapp pages

Django automatically installs a new pages directory and several files for us. But even

though the app has been created our hello_project won’t recognize it until we add it

to the INSTALLED_APPS config within the hello_project/settings.py file.

Django loads apps from top to bottom so generally speaking it’s a good practice to

add new apps below built-in apps they might rely on such as admin, auth, and all the

rest.

Note that while it is possible to simply type the name of the app, pages, you are

better off typing the full pages.apps.PagesConfig which opens up more possibilities

in configuring apps30.

Code

hello_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'pages.apps.PagesConfig', # new

]

Nowwe can set the URL route for the pages app. Sincewewant ourmessage to appear

on the homepage we’ll use the empty string ''. Don’t forget to add the include import

on the second line as well.
30https://docs.djangoproject.com/en/2.2/ref/applications/#configuring-applications

https://docs.djangoproject.com/en/2.2/ref/applications/#configuring-applications
https://docs.djangoproject.com/en/2.2/ref/applications/#configuring-applications

Chapter 1: Docker 18

Code

hello_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('pages.urls')), # new

]

Rather than set up a template at this point we can just hardcode a message in our

view layer at pages/views.py which will output the string “Hello, World!”.

Code

pages/views.py

from django.http import HttpResponse

def home_page_view(request):

return HttpResponse('Hello, World!')

What’s next? Our last step is to create a urls.py file within the pages app and link it

to home_page_view. If you are on an Mac or Linux computer the touch command can

be used from the command line to create new files. On Windows create the new file

with your text editor.

Chapter 1: Docker 19

Command Line

(hello) $ touch pages/urls.py

Within your text editor import path on the top line, add the home_page_view, and then

set its route to again be the empty string of ''. Note that we also provide an optional

name, home, for this route which is a best practice.

Code

pages/urls.py

from django.urls import path

from .views import home_page_view

urlpatterns = [

path('', home_page_view, name='home')

]

The full flow of our Django homepage is as follows: * when a user goes to the home-

page theywill first be routed to hello_project/urls.py * then routed to pages/urls.py

* and finally directed to the home_page_view which returns the string “Hello, World!”

Our work is done for a basic homepage. Start up the local server again.

Command Line

(hello) $ python manage.py runserver

If you refresh the web browser at http://127.0.0.1:8000/31 it will now output our

desired message.
31http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 1: Docker 20

Hello World

Now it’s time to switch to Docker. Stop the local server again with Control+c and exit

our virtual environment since we no longer need it by typing exit.

Command Line

(hello) $ exit

$

How do we know the virtual environment is no longer active? There will no longer be

parentheses around the directory name on the command line prompt. Any normal

Django commands you try to run at this point will fail. For example, try python

manage.py runserver to see what happens.

Command Line

$ python manage.py runserver

File "./manage.py", line 14

) from exc

^

SyntaxError: invalid syntax

This means we’re fully out of the virtual environment and ready for Docker.

Chapter 1: Docker 21

Images, Containers, and the Docker Host

A Docker image is a snapshot in time of what a project contains. It is represented by a

Dockerfile and is literally a list of instructions that must be built. A Docker container

is a running instance of an image. To continue our apartment analogy from earlier, the

image is the blueprint or set of plans for the apartment; the container is the actual,

fully-built building.

The third core concept is the “Docker host” which is the underlying OS. It’s possible

to have multiple containers running within a single Docker host. When we refer to

code or processes runningwithin Docker, that means they are running in the Docker

host.

Let’s create our first Dockerfile to see all of this theory in action.

Command Line

$ touch Dockerfile

Within the Dockerfile add the following code which we’ll walk through line-by-line

below.

Dockerfile

Pull base image

FROM python:3.7

Set environment variables

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

Set work directory

WORKDIR /code

Chapter 1: Docker 22

Install dependencies

COPY Pipfile Pipfile.lock /code/

RUN pip install pipenv && pipenv install --system

Copy project

COPY . /code/

Dockerfiles are read from top-to-bottomwhen an image is created. The first instruc-

tion must be the FROM command which lets us import a base image to use for our

image, in this case Python 3.7.

Then we use the ENV command to set two environment variables:

• PYTHONUNBUFFERED ensures our console output looks familiar and is not buffered

by Docker, which we don’t want

• PYTHONDONTWRITEBYTECODE means Python will not try to write .pyc files which we

also do not desire

Next we use WORKDIR to set a default work directory path within our image called code

which is where we will store our code. If we didn’t do this then each time we wanted

to execute commands within our container we’d have to type in a long path. Instead

Docker will just assume we mean to execute all commands from this directory.

For our dependencies we are using Pipenv so we copy over both the Pipfile and

Pipfile.lock files into a /code/ directory in Docker.

It’s worth taking a moment to explain why Pipenv creates a Pipfile.lock, too. The

concept of lock files is not unique to Python or Pipenv; in fact it is already present in

package managers for most modern programming languages: Gemfile.lock in Ruby,

yarn.lock in JavaScript, composer.lock in PHP, and so on. Pipenv was the first popular

project to incorporate them into Python packaging.

Chapter 1: Docker 23

The benefit of a lock file is that this leads to a deterministic build: no matter how

many times you install the software packages, you’ll have the same result. Without a

lock file that “locks down” the dependencies and their order, this is not necessarily

the case. Which means that two team members who install the same list of software

packages might have slightly different build installations.

When we’re working with Docker where there is code both locally on our computer

and also within Docker, the potential for Pipfile.lock conflicts arises when updating

software packages. We’ll explore this properly in the next chapter.

Moving along we use the RUN command to first install Pipenv and then pipenv install

to install the software packages listed in our Pipfile.lock, currently just Django. It’s

important to add the --system flag as well since by default Pipenv will look for a

virtual environment in which to install any package, but since we’re within Docker

now, technically there isn’t any virtual environment. In a way, the Docker container

is our virtual environment and more. So we must use the --system flag to ensure our

packages are available throughout all of Docker for us.

As the final step we copy over the rest of our local code into the /code/ direc-

tory within Docker. Why do we copy local code over twice, first the Pipfile and

Pipfile.lock and then the rest? The reason is that images are created based on

instructions top-down so we want things that change often–like our local code–to

be last. That way we only have to regenerate that part of the image when a change

happens, not reinstall everything each time there is a change. And since the software

packages contained in our Pipfile and Pipfile.lock change infrequently, it makes

sense to copy them over and install them earlier.

Our image instructions are now done so let’s build the image using the command

docker build . The period, ., indicates the current directory is where to execute the

command. There will be a lot of output here; I’ve only included the first two lines and

the last three.

Chapter 1: Docker 24

Command Line

$ docker build .

Sending build context to Docker daemon 154.1kB

Step 1/7 : FROM python:3.7

...

Step 7/7 : COPY . /code/

---> a48b2acb1fcc

Successfully built a48b2acb1fcc

Moving on we now need to create a docker-compose.yml file to control how to run the

container that will be built based upon our Dockerfile image.

Command Line

$ touch docker-compose.yml

It will contain the following code.

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

volumes:

- .:/code

ports:

- 8000:8000

Chapter 1: Docker 25

On the top line we specify the most recent version32 of Docker Compose which is

currently 3.7. Don’t be confused by the fact that Python is also on version 3.7 at the

moment; there is no overlap between the two! It’s just a coincidence.

Then we specify which services (or containers) we want to have running within our

Docker host. It’s possible to have multiple services running, but for now we just have

one for web. We specify how to build the container by saying, Look in the current

directory . for the Dockerfile. Then within the container run the command to start up

the local server.

The volumes33 mount automatically syncs the Docker filesystem with our local

computer’s filesystem. This means that we don’t have to rebuild the image each time

we change a single file!

Lastly we specify the ports to expose within Docker which will be 8000, which is the

Django default.

If this is your first time using Docker, it is highly likely you are confused right now.

But don’t worry. We’ll create multiple Docker images and containers over the course

of this book and with practice the flow will start to make more sense. You’ll see we

use very similar Dockerfile and docker-compose.yml files in each of our projects.

The final step is to run our Docker container using the command docker-compose up.

This commandwill result in another long stream of output code on the command line.

32https://docs.docker.com/compose/compose-file/compose-versioning/
33https://docs.docker.com/storage/volumes/

https://docs.docker.com/compose/compose-file/compose-versioning/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/compose/compose-file/compose-versioning/
https://docs.docker.com/storage/volumes/

Chapter 1: Docker 26

Command Line

$ docker-compose up

Creating network "hello_default" with the default driver

Building web

Step 1/7 : FROM python:3.7

...

Creating hello_web_1 ... done

Attaching to hello_web_1

web_1 | Performing system checks...

web_1 |

web_1 | System check identified no issues (0 silenced).

web_1 | September 20, 2019 - 17:21:57

web_1 | Django version 2.2.5, using settings 'hello_project.settings'

web_1 | Starting development server at http://0.0.0.0:8000/

web_1 | Quit the server with CONTROL-C.

To confirm it actuallyworked, go back to http://127.0.0.1:8000/ in yourwebbrowser.

Refresh the page and the “Hello, World” page should still appear.

Django is now running purely within a Docker container. We are not working within

a virtual environment locally. We did not execute the runserver command. All of our

code now exists and our Django server is running within a self-contained Docker

container. Success!

Stop the container with Control+c (press the “Control” and “c” button at the same

time) and additionally type docker-compose down. Docker containers take up a lot of

memory so it’s a good idea to stop them in this way when you’re done using them.

Containers are meant to be stateless which is why we use volumes to copy our code

over locally where it can be saved.

Chapter 1: Docker 27

Command Line

$ docker-compose down

Removing hello_web_1 ... done

Removing network hello_default

Git

Git34 is the version control system of choice these days and we’ll use it in this book.

First add a new Git file with git init, then check the status of changes, add updates,

and include a commit message.

Command Line

$ git init

$ git status

$ git add .

$ git commit -m 'ch1'

You can compare your code for this chapter with the official repository35 available on

Github.

Conclusion

Docker is a self-contained environment that includes everything we need for local

development: web services, databases, and more if we want. The general pattern will

always be the same when using it with Django:
34https://git-scm.com/
35https://github.com/wsvincent/djangoforprofessionals/tree/master/ch1-hello

https://git-scm.com/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch1-hello
https://git-scm.com/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch1-hello

Chapter 1: Docker 28

• create a virtual environment locally and install Django

• create a new project

• exit the virtual environment

• write a Dockerfile and then build the initial image

• write a docker-compose.yml file and run the container with docker-compose up

We’ll build several more Django projects with Docker so this flow makes more sense,

but that’s really all there is to it. In the next chapter we’ll create a new Django project

using Docker and add PostgreSQL in a separate container as our database.

Chapter 2: PostgreSQL
One of the most immediate differences between working on a “toy app” in Django

and a production-ready one is the database. Django ships with SQLite36 as the default

choice for local development because it is small, fast, and file-based which makes it

easy to use. No additional installation or configuration is required.

However this convenience comes at a cost. Generally speaking SQLite is not a good

database choice for professional websites. Sowhile it is fine to use SQLite locally while

prototyping an idea, it is rare to actually use SQLite as the database on a production

project.

Django ships with built-in support for four databases37: SQLite, PostgreSQL, MySQL,

and Oracle. We’ll be using PostgreSQL38 in this book as it is the most popular choice

for Django developers, however, the beauty of Django’s ORM is that even if we wanted

to use MySQL or Oracle, the actual Django code we write will be almost identical. The

Django ORM handles the translation from Python code to the databases for us which

is quite amazing if you think about it.

The challenge of using these three databases is that each must be both installed

and run locally if you want to faithfully mimic a production environment on your

local computer. And we do want that! While Django handles the details of switching

between databases for us there are inevitably small, hard-to-catch bugs that can crop

up if you use SQLite for local development but a different database in production.

Therefore a best practice is use the same database locally and in production.
36https://sqlite.org/index.html
37https://docs.djangoproject.com/en/2.2/ref/databases/#databases
38https://www.postgresql.org/

https://sqlite.org/index.html
https://docs.djangoproject.com/en/2.2/ref/databases/#databases
https://www.postgresql.org/
https://sqlite.org/index.html
https://docs.djangoproject.com/en/2.2/ref/databases/#databases
https://www.postgresql.org/

Chapter 2: PostgreSQL 30

In this chapter we’ll start a newDjango project with a SQLite database and then switch

over to both Docker and PostgreSQL.

Starting

On the command line make sure you’ve navigated back to the code folder on our

desktop. You can do this two ways. Either type cd .. to move “up” a level so if you

are currently in Desktop/code/hello you will move to Desktop/code. Or you can simply

type cd ∼/Desktop/code/ which will take you directly to the desired directory. Then

create a new directory called postgresql for this chapter’s code.

Command Line

$ cd ..

$ mkdir postgresql && cd postgresql

Now install Django, start the shell, and create a basicDjango project called postgresql_-

project. Don’t forget the period . at the end of the command!

Command Line

$ pipenv install django==2.2.7

$ pipenv shell

(postgresql) $ django-admin startproject postgresql_project .

So far so good. Now we can migrate our database to initialize it and use runserver to

start the local server.

Normally I don’t recommend running migrate on new projects until after a custom

user model has been configured. Otherwise Django will bind the database to the

built-in Usermodel which is difficult to modify later on in the project. We’ll cover this

properly in Chapter 3 but since this chapter is primarily for demonstration purposes,

Chapter 2: PostgreSQL 31

using the default Usermodel here is a one-time exception.

Command Line

(postgresql) $ python manage.py migrate

(postgresql) $ python manage.py runserver

Confirm everything worked by navigating to http://127.0.0.1:8000/39 in your web

browser. You may need to refresh the page but should see the familiar Django

welcome page.

Stop the local server with Control+c and then use the ls command to list all files and

directories.

Command Line

(postresql) $ ls

Pipfile Pipfile.lock db.sqlite3 manage.py postgresql_project

Docker

To switch over toDocker first exitour virtual environment and then create Dockerfile

and docker-compose.yml files which will control our Docker image and container

respectively.

39http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 2: PostgreSQL 32

Command Line

(postgresql) $ exit

$ touch Dockerfile

$ touch docker-compose.yml

The Dockerfile is the same as in Chapter 1.

Dockerfile

Pull base image

FROM python:3.7

Set environment variables

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

Set work directory

WORKDIR /code

Install dependencies

COPY Pipfile Pipfile.lock /code/

RUN pip install pipenv && pipenv install --system

Copy project

COPY . /code/

Go ahead and build the initial image now using the docker build . command.

Did you notice that the Dockerfile built an imagemuch faster this time around? That’s

because Docker looks locally on your computer first for a specific image. If it doesn’t

find an image locally it will then download it. And since many of these images were

Chapter 2: PostgreSQL 33

already on the computer from the previous chapter, Docker didn’t need to download

them all again!

Time now for the docker-compose.yml file which also matches what we saw previously

in Chapter 1.

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

volumes:

- .:/code

ports:

- 8000:8000

Detached Mode

We’ll start up our container now but this time in detachedmodewhich requires either

the -d or -detach flag (they do the same thing).

Command Line

$ docker-compose up -d

Detachedmode runs containers in the background40, whichmeanswe can use a single

command line tab without needing a separate one open as well. This saves us from
40https://docs.docker.com/compose/reference/up/

https://docs.docker.com/compose/reference/up/
https://docs.docker.com/compose/reference/up/

Chapter 2: PostgreSQL 34

switching back and forth between two command line tabs constantly. The downside

is that if/when there is an error, the output won’t always be visible. So if your screen

does not match this book at some point, try typing docker-compose logs to see the

current output and debug any issues.

You likely will see a “Warning: Image for service web was built because it did not

already exist” message at the bottom of the command. Docker automatically created

a new image for us within the container. As we’ll see later in the book, adding the

--build flag to force an image build is necessary when software packages are updated

because, by default, Docker will look for a local cached copy of software and use that

which improves performance.

To confirm things are working properly go back to http://127.0.0.1:8000/ in your

web browser. Refresh the page to see the Django welcome page again.

Since we’re working within Docker now as opposed to locally we must preface

traditional commands with docker-compose exec [service] where we specify the

name of the service. For example, to create a superuser account instead of typing

python manage.py createsuperuser the updated command would now look like the

line below, using the web service.

Command Line

$ docker-compose exec web python manage.py createsuperuser

For the username choose sqliteadmin, sqliteadmin@email.com as the email address,

and select the password of your choice. I often use testpass123.

Then navigate directly into the admin at http://127.0.0.1:8000/admin and log in.

Chapter 2: PostgreSQL 35

Django admin login

You will be redirected to the admin homepage. Note in the upper right corner

sqliteadmin is the username.

Django sqliteadmin

If you click on the Users button it takes us to the Users page where we can confirm

only one user has been created.

Chapter 2: PostgreSQL 36

Admin Users page

It’s important to highlight another aspect of Docker at this point: so far we’ve been

updating our database–currently represented by the db.sqlite3 file–within Docker.

Thatmeans the actual db.sqlite3 file is changing each time. And thanks to the volumes

mount in our docker-compose.yml config each file change has been copied over into

a db.sqlite3 file on our local computer too. You could quit Docker, start the shell,

start the server with python manage.py runserver, and see the exact same admin login

at this point because the underlying SQLite database is the same.

PostgreSQL

Now it’s time to switch over to PostgreSQL for our project which takes three

additional steps:

Chapter 2: PostgreSQL 37

• install a database adapter, psycopg2, so Python can talk to PostgreSQL

• update the DATABASE config in our settings.py file

• install and run PostgreSQL locally

Ready? Here we go. Stop the running Docker container with docker-compose down.

Command Line

$ docker-compose down

Stopping postgresql_web_1 ... done

Removing postgresql_web_1 ... done

Removing network postgresql_default

Then within our docker-compose.yml file add a new service called db. This means there

will be two separate services, each a container, running within our Docker host: web

for the Django local server and db for our PostgreSQL database.

The PostgreSQL version will be pinned to the latest version, 11. If we had not specified

a version number and instead used just postgres then the latest version of PostgreSQL

would be downloaded even if at a later date that is Postgres 12 which will likely have

different requirements.

Finally we add a depends_on line to our web service since it literally depends on the

database to run. This means that db will be started up before web.

Chapter 2: PostgreSQL 38

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

volumes:

- .:/code

ports:

- 8000:8000

depends_on:

- db

db:

image: postgres:11

Now run docker-compose up -d which will rebuild our image and spin up two

containers, one running PostgreSQL within db and the other our Django web server.

Command Line

$ docker-compose up -d

Creating network "postgresql_default" with the default driver

...

Creating postgresql_db_1 ... done

Creating postgresql_web_1 ... done

It’s important to note at this point that a production database like PostgreSQL is not

file-based. It runs entirely within the db service and is ephemeral; when we execute

Chapter 2: PostgreSQL 39

docker-compose down all data within it will be lost. This is in contrast to our code in the

web container which has a volumesmount to sync local and Docker code.

In the next chapter we’ll learn how to add a volumesmount for our db service to persist

our database information.

Settings

With your text editor, open the posgresql_project/settings.py file and scroll down

to the DATABASES config. The current setting is this:

Code

postgresql_project/settings.py

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.sqlite3',

'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),

}

}

Bydefault Django specifies sqlite3 as the database engine, gives it the name db.sqlite3,

and places it at BASE_DIR which means in our project-level directory.

Since directory structure is often a point of confusion “project-level” means the

top directory of our project which contains postgresql_project, manage.py, Pipfile,

Pipfile.lock, and the db.slite3 file.

Chapter 2: PostgreSQL 40

Command Line

(postgresql) $ ls

Dockerfile Pipfile.lock docker-compose.yml postgresql_project

Pipfile db.sqlite3 manage.py

To switch over to PostgreSQLwewill update the ENGINE41 configuration. PostgreSQL

requires a NAME, USER, PASSWORD, HOST, and PORT.

For convenience we’ll set the first three to postgres, the HOST to db which is the name

of our service set in docker-compose.yml, and the PORT to 5432 which is the default

PostgreSQL port42.

Code

postgresql_project/settings.py

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.postgresql',

'NAME': 'postgres',

'USER': 'postgres',

'PASSWORD': 'postgres',

'HOST': 'db',

'PORT': 5432

}

}

You will see an error now if your refresh the web page.
41https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE
42https://en.wikipedia.org/wiki/Port_%28computer_networking%29

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DATABASE-ENGINE
https://en.wikipedia.org/wiki/Port_(computer_networking)

Chapter 2: PostgreSQL 41

Django error

What’s happening? Since we’re running Docker in detached mode with the -d flag it’s

not immediately clear. Time to check our logs.

Command Line

$ docker-compose logs

...

web_1 | django.core.exceptions.ImproperlyConfigured: Error loading psycopg2

module: No module named 'psycopg2'

There will be a lot of output but at the bottom of the web_1 section you’ll see the above

lines which tells us we haven’t installed the psycopg2 driver yet.

Psycopg

PostgreSQL is a database that can be used by almost any programming language. But

if you think about it, how does a programming language–and they all vary in some

Chapter 2: PostgreSQL 42

way or another–connect to the database itself?

The answer is via a database adapter! And that’s what Psycopg43 is, the most popular

database adapter for Python. If you’d like to learn more about how Psycopg works

here is a link to a fuller description44 on the official site.

We can install Pyscopg with Pipenv. On the command line, enter the following

command so it is installed within our Docker host.

Command Line

$ docker-compose exec web pipenv install psycopg2-binary==2.8.3

Why install within Docker rather than locally I hope you’re asking? The short answer is

that consistently installing new software packages within Docker and then rebuilding

the image from scratch will save us from potential Pipfile.lock conflicts.

The Pipfile.lock generation depends heavily on the OS being used. We’ve specified

our entire OS within Docker, including using Python 3.7. But if you install psycopg2 lo-

cally on your computer, which has a different environment, the resulting Pipfile.lock

file will also be different. But then the volumes mount in our docker-compose.yml

file, which automatically syncs the local and Docker filesystems, will cause the local

Pipfile.lock to overwrite the version within Docker. So now our Docker container is

trying to run an incorrect Pipfile.lock file. Ack!

One way to avoid these issues is to consistently install new software packages within

Docker rather than locally.

If you now refresh the webpage you will….still see an error. Ok, let’s check the logs.

43http://initd.org/psycopg/
44http://initd.org/psycopg/docs/index.html

http://initd.org/psycopg/
http://initd.org/psycopg/docs/index.html
http://initd.org/psycopg/
http://initd.org/psycopg/docs/index.html

Chapter 2: PostgreSQL 43

Command Line

$ docker-compose logs

It’s the same as before! Why does this happen? Docker automatically caches images

unless something changes for performance reasons. We want it to automatically

rebuild the image with our new Pipfile and Pipfile.lock but because the last line

of our Dockerfile is COPY . /code/ only the files will copy; the underlying image won’t

rebuild itself unless we force it too. This can be done by adding the --build flag.

So to review: whenever adding a new package first install it within Docker, stop the

containers, force an image rebuild, and then start the containers up again. We’ll use

this flow repeatedly throughout the book.

Command Line

$ docker-compose down

$ docker-compose up -d --build

If you refresh the homepage again theDjangowelcomepage at http://127.0.0.1:8000/45

now works! That’s because Django has successfully connected to PostgreSQL via

Docker.

Great, everything is working.

New Database

However sincewe are using PostgreSQL now, not SQLite, our database is empty. If you

look at the current logs again by typing docker-compose logs you’ll see complaints like

“You have 15 unapplied migrations(s)”.
45http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 2: PostgreSQL 44

To reinforce this point visit the Admin at http://127.0.0.1:8000/admin/46 and log in.

Will our previous superuser account of sqliteadmin and testpass123 work?

Django admin error

Nope! We see ProgrammingError at /admin which complains that auth_user doesn’t

even exist because we have not done a migration yet! Also, we don’t have a superuser

either on our PostgreSQL database.

To fix this situation we can both migrate and create a superuser within Docker that

will access the PostgreSQL database.

Command Line

$ docker-compose exec web python manage.py migrate

$ docker-compose exec web python manage.py createsuperuser

What should we call our superuser? Let’s use postgresadmin and for testing purposes

set the email to postgresadmin@email.com and the password to testpass123.

In your web browser navigate to the admin page at http://127.0.0.1:8000/admin/47

46http://127.0.0.1:8000/admin/
47http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/

Chapter 2: PostgreSQL 45

and enter in the new superuser log in information.

Admin with postgresadmin

In the upper right corner it shows that we are logged in with postgresadmin now not

sqliteadmin. Also you can click on the Users tab on the homepage and visit the Users

section to see our one and only user is the new superuser account.

Chapter 2: PostgreSQL 46

Admin users

Remember to stop our running container with docker-compose down.

Command Line

$ docker-compose down

Git

Let’s save our changes again by initializing Git for this new project, adding our

changes, and including a commit message.

Chapter 2: PostgreSQL 47

Command Line

$ git init

$ git status

$ git add .

$ git commit -m 'ch2'

The official source code for Chapter 2 is available on Github48.

Conclusion

The goal of this chapter was to demonstrate how Docker and PostgreSQL work

together on a Django project. Switching between a SQLite database and a PostgreSQL

is a mental leap for many developers initially.

The key point is that with Docker we don’t need to be in a local virtual environment

anymore. Docker is our virtual environment…and our database and more if desired.

The Docker host essentially replaces our local operating system and within it we can

run multiple containers, such as for our web app and for our database, which can all

be isolated and run separately.

In the next chapter we will start our online Bookstore project. Let’s begin!
48https://github.com/wsvincent/djangoforprofessionals/tree/master/ch2-postgresql

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch2-postgresql
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch2-postgresql

Chapter 3: Bookstore Project
It is time to build the main project of this book, an online Bookstore. In this chapter

we will start a new project, switch over to Docker, add a custom user model, and

implement our first tests.

Let’s start by creating a new Django project with Pipenv locally and then switch over

to Docker. You’re likely in the postgresql directory right now from Chapter 2 so on

the command line type cd ..which will take you back to the desired code directory on

the Desktop (assuming you’re on a Mac). We’ll create a books directory for our code,

and then install django. We also know we’ll be using PostgreSQL so we can install

the psycopg2 adapter now too. It is only after we have built our initial image that we

start installing future software packages within Docker itself. Lastly use the shell

command to enter the new virtual environment.

Command Line

$ cd ..

$ mkdir books && cd books

$ pipenv install django==2.2.7 psycopg2-binary==2.8.4

$ pipenv shell

We’ll name our newDjango project bookstore_project. Make sure you don’t forget that

period, ., at the end of the command or else Django will create an extra directory

which we don’t need. Then use runserver to start the local Django web server and

confirm everything is working correctly.

Chapter 3: Bookstore Project 49

Command Line

(books) $ django-admin startproject bookstore_project .

(books) $ python manage.py runserver

In your web browser go to http://127.0.0.1:8000/49 and you should see the friendly

Django welcome page.
49http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 3: Bookstore Project 50

Django welcome page

On the command line you will likely see a warning about “unapplied migration(s)”. It’s

safe to ignore this for now sincewe’re about to switch over to Docker and PostgreSQL.

Chapter 3: Bookstore Project 51

Docker

We can now switch over to Docker in our project. Go ahead and stop the local server

Control+c and also exit the virtual environment shell.

Command Line

(books) $ exit

$

Docker should already be installed and the desktop app running from the previous

chapter. Per usual we need to create a Dockerfile and docker-compose.yml file.

Command Line

$ touch Dockerfile

$ touch docker-compose.yml

The Dockerfile will be the same as before.

Dockerfile

Pull base image

FROM python:3.7

Set environment variables

ENV PYTHONDONTWRITEBYTECODE 1

ENV PYTHONUNBUFFERED 1

Set work directory

WORKDIR /code

Install dependencies

Chapter 3: Bookstore Project 52

COPY Pipfile Pipfile.lock /code/

RUN pip install pipenv && pipenv install --system

Copy project

COPY . /code/

But for the docker-compose.yml file we’ll add an additional feature which is a dedicated

volume for our database so it persists evenwhen the services containers are stopped.

Removing the volume itself is a separate process.

We can do this by specifying a path for volumes within the db container and then

specifying a volumes outside of our services with the same name postgres_data. You

can see the Docker documentation on volumes50 for a more technical explanation of

how this all works if you’re interested.

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

volumes:

- .:/code

ports:

- 8000:8000

depends_on:

- db

db:
50https://docs.docker.com/storage/volumes/

https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/

Chapter 3: Bookstore Project 53

image: postgres:11

volumes:

- postgres_data:/var/lib/postgresql/data/

volumes:

postgres_data:

We can build our image and run the containers with one command.

Command Line

$ docker-compose up -d --build

If you see an error here like Bindfor 0.0.0.0:8000 failed: port is already allocated

then you did not fully stop the Docker container from Chapter 2. Try running

docker-compose down in the directorywhere you previously ran it, probably postgresql.

Then attempt to build and run our new image and container again. If that approach

still fails you can quit the Docker desktop application completely and then open it

again.

Go to the web browser now at http://127.0.0.1:8000/51 and click refresh. It should be

the same friendly Django welcome page albeit now running inside of Docker.

PostgreSQL

Even though we already installed psycopg and have PostgreSQL available in our

docker-compose.yml file we still must direct Django to switch over to it instead of the

default SQLite database. Do that now. The code is the same as in the previous chapter.

51http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/

Chapter 3: Bookstore Project 54

Code

bookstore_project/settings.py

DATABASES = {

'default': {

'ENGINE': 'django.db.backends.postgresql',

'NAME': 'postgres',

'USER': 'postgres',

'PASSWORD': 'postgres',

'HOST': 'db',

'PORT': 5432

}

}

Refresh the web browser for the homepage to confirm everything still works cor-

rectly.

Custom User Model

Time to implement a custom user model which the official Django documentation

“highly recommends.”52 Why? Because you will need to make changes to the built-in

Usermodel at some point in your project’s life.

If you have not startedwith a customusermodel from the very first migrate command

you run, then you’re in for a world of hurt because User is tightly interwoven with the

rest of Django internally. It is challenging to switch over to a custom user model mid-

project.
52https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#using-a-custom-user-model-when-

starting-a-project

https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#using-a-custom-user-model-when-starting-a-project

Chapter 3: Bookstore Project 55

A point of confusion for many people is that custom user models were only added

in Django 1.5. Up until that point the recommended approach was to add a One-

ToOneField53, often called a Profile model, to User. You’ll often see this set up in older

projects.

But these days using a custom user model is the more common approach. However

as with many things Django-related, there are implementation choices: either extend

AbstractUser54 which keeps the default User fields and permissions or extend Ab-

stractBaseUser55 which is even more granular, and flexible, but requires more work.

We’ll stick with the simpler AbstractUser in this book as AbstractBaseUser can be

added later if needed.

There are four steps for adding a custom user model to our project:

1. Create a CustomUsermodel

2. Update settings.py

3. Customize UserCreationForm and UserChangeForm

4. Add the custom user model to admin.py

The first step is to create a CustomUsermodel which will live within its own app. I like

to name this app users. We could do this either locally within our virtual environment

shell, meaning we’d go pipenv shell and then run python manage.py startapp users.

However for consistency we’ll run the majority of our commands within Docker itself.

53https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.OneToOneField
54https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
55https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.

AbstractBaseUser

https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.OneToOneField
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser

Chapter 3: Bookstore Project 56

Command Line

$ docker-compose exec web python manage.py startapp users

Create a new CustomUser model which extends AbstractUser. That means we’re

essentially making a copy where CustomUser now has inherited all the functionality

of AbstractUser, but we can override or add new functionality as needed. We’re

not making any changes yet so include the Python pass statement which acts as a

placeholder for our future code.

Code

users/models.py

from django.contrib.auth.models import AbstractUser

from django.db import models

class CustomUser(AbstractUser):

pass

Now go in and update our settings.py file in the INSTALLED_APPS section to tell Django

about our new users app. We also want to add a AUTH_USER_MODEL config at the bottom

of the file which will cause our project to use CustomUser instead of the default User

model.

Chapter 3: Bookstore Project 57

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Local

'users.apps.UsersConfig', # new

]

...

AUTH_USER_MODEL = 'users.CustomUser' # new

Why do we do users.apps.UsersConfig here instead of just the older users approach?

Both work but the longer form is a best practice as it takes advantage of additional

configurations that can be added in AppConfiga.
ahttps://docs.djangoproject.com/en/2.2/ref/applications/#django.apps.AppConfig

Time to create amigrations file for the changes.We’ll add the optional app name users

to the command so that only changes to that app are included.

https://docs.djangoproject.com/en/2.2/ref/applications/#django.apps.AppConfig
https://docs.djangoproject.com/en/2.2/ref/applications/#django.apps.AppConfig

Chapter 3: Bookstore Project 58

Command Line

$ docker-compose exec web python manage.py makemigrations users

Migrations for 'users':

users/migrations/0001_initial.py

- Create model CustomUser

Then run migrate to initialize the database for the very first time.

Command Line

$ docker-compose exec web python manage.py migrate

Custom User Forms

A user model can be both created and edited within the Django admin. So we’ll need

to update the built-in forms too to point to CustomUser instead of User.

Create a users/forms.py file.

Command Line

$ touch users/forms.py

In your text editor type in the following code to switch over to CustomUser.

Chapter 3: Bookstore Project 59

Code

users/forms.py

from django.contrib.auth import get_user_model

from django.contrib.auth.forms import UserCreationForm, UserChangeForm

class CustomUserCreationForm(UserCreationForm):

class Meta:

model = get_user_model()

fields = ('email', 'username',)

class CustomUserChangeForm(UserChangeForm):

class Meta:

model = get_user_model()

fields = ('email', 'username',)

At the very top we’ve imported CustomUser model via get_user_model56 which looks

to our AUTH_USER_MODEL config in settings.py. This might feel a bit more circular than

directly importing CustomUser here, but it enforces the idea of making one single

reference to the custom user model rather than directly referring to it all over our

project.

Next we import UserCreationForm57 and UserChangeForm58 which will both be

extended.
56https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.get_user_model
57https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
58https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserChangeForm
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.get_user_model
https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserCreationForm
https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.forms.UserChangeForm

Chapter 3: Bookstore Project 60

Then create two new forms–CustomUserCreationForm and CustomUserChangeForm–that

extend the base user forms imported above and specify swapping in our CustomUser

model and displaying the fields email and username. The password field is implicitly

included by default and so does not need to be explicitly named here as well.

Custom User Admin

Finally we have to update our users/admin.py file. The admin is a common place to

manipulate user data and there is tight coupling between the built-in User and the

admin.

We’ll extend the existing UserAdmin into CustomUserAdmin and tell Django to use our

new forms, custom user model, and list only the email and username of a user. If we

wanted to we could add more of the existing User fields59 to list_display such as

is_staff.

Code

users/admin.py

from django.contrib import admin

from django.contrib.auth import get_user_model

from django.contrib.auth.admin import UserAdmin

from .forms import CustomUserCreationForm, CustomUserChangeForm

CustomUser = get_user_model()

class CustomUserAdmin(UserAdmin):

add_form = CustomUserCreationForm
59https://docs.djangoproject.com/en/2.2/ref/contrib/auth/

https://docs.djangoproject.com/en/2.2/ref/contrib/auth/
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/

Chapter 3: Bookstore Project 61

form = CustomUserChangeForm

model = CustomUser

list_display = ['email', 'username',]

admin.site.register(CustomUser, CustomUserAdmin)

Phew. A bit of code upfront but this saves a ton of heartache later on.

Superuser

A good way to confirm our custom user model is up and running properly is to

create a superuser account so we can log into the admin. This command will access

CustomUserCreationForm under the hood.

Command Line

$ docker-compose exec web python manage.py createsuperuser

I’ve used the username wsv, the email address will@wsvincent.com, and the password

testpass123. You can use your own preferred variations here.

Now go to http://127.0.0.1:8000/admin60 and confirm that you can log in. You should

see your superuser name in the upper right corner on the post-log in page.
60http://127.0.0.1:8000/admin

http://127.0.0.1:8000/admin
http://127.0.0.1:8000/admin

Chapter 3: Bookstore Project 62

Django admin homepage

You can also click on the Users section to see the email and username of your

superuser account.

Django admin users page

Chapter 3: Bookstore Project 63

Tests

Since we’ve added new functionality to our project we should test it. Whether you are

a solo developer or working on a team, tests are important. In the words of Django

co-founder Jacob Kaplan-Moss, “Code without tests is broken as designed.”

There are two main types of tests:

• Unit tests are small, fast, and isolated to a specific piece of functionality

• Integration tests are large, slow, and used for testing an entire application or a

user flow like payment that covers multiple screens

You should write many unit tests and a small number of integration tests.

The Python programming language contains its own unit testing framework61 and

Django’s automated testing framework62 extends this with multiple additions into a

web context. There is no excuse for not writing a lot of tests; they will save you time.

It’s important to note that not everything needs to be tested. For example, any built-in

Django features already contain tests in the source code. If we were using the default

User model in our project we would not need to test it. But since we’ve created a

CustomUsermodel we should.

Unit Tests

To write unit tests in Django we use TestCase63 which is, itself, an extension of

Python’s TestCase64. Our users app already contains a tests.py file which is auto-
61https://docs.python.org/3.7/library/unittest.html
62https://docs.djangoproject.com/en/2.2/topics/testing/
63https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase
64https://docs.python.org/3/library/unittest.html#unittest.TestCase

https://docs.python.org/3.7/library/unittest.html
https://docs.djangoproject.com/en/2.2/topics/testing/
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3.7/library/unittest.html
https://docs.djangoproject.com/en/2.2/topics/testing/
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Chapter 3: Bookstore Project 64

matically added when the startapp command is used. Currently it is blank. Let’s fix

that!

Each method must be prefaced with test in order to be run by the Django test suite.

It is also a good idea to be overly descriptive with your unit test names since mature

projects have hundreds if not thousands of tests!

Code

users/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

class CustomUserTests(TestCase):

def test_create_user(self):

User = get_user_model()

user = User.objects.create_user(

username='will',

email='will@email.com',

password='testpass123'

)

self.assertEqual(user.username, 'will')

self.assertEqual(user.email, 'will@email.com')

self.assertTrue(user.is_active)

self.assertFalse(user.is_staff)

self.assertFalse(user.is_superuser)

def test_create_superuser(self):

User = get_user_model()

Chapter 3: Bookstore Project 65

admin_user = User.objects.create_superuser(

username='superadmin',

email='superadmin@email.com',

password='testpass123'

)

self.assertEqual(admin_user.username, 'superadmin')

self.assertEqual(admin_user.email, 'superadmin@email.com')

self.assertTrue(admin_user.is_active)

self.assertTrue(admin_user.is_staff)

self.assertTrue(admin_user.is_superuser)

At the top we have imported both get_user_model and TestCase before creating a

CustomUserTests class. Within it are two separate tests. test_create_user confirms

that a new user can be created. First we set our user model to the variable User and

then create one via the manager method create_user65 which does the actual work

of creating a new user with the proper permissions.

For test_create_superuser we follow a similar pattern but reference create_su-

peruser66 instead of create_user. The difference between the two users is that a

superuser should have both is_staff and is_superuser set to True.

To run our tests within Docker we’ll prefix docker-compose exec web to the traditional

command python manage.py test.

65https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_

user
66https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_

superuser

https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_user
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_superuser
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_superuser
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_user
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_user
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_superuser
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.UserManager.create_superuser

Chapter 3: Bookstore Project 66

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

..

Ran 2 tests in 0.268s

OK

Destroying test database for alias 'default'...

All the tests pass so we can proceed.

Git

We’ve accomplished quite a lot in this chapter so it is a goodpoint to pause and commit

our work by initializing a new Git repository, adding changes, and including a commit

message.

Command Line

$ git init

$ git status

$ git add .

$ git commit -m 'ch3'

You can compare with the official source code for this chapter on Github67.
67https://github.com/wsvincent/djangoforprofessionals/tree/master/ch3-books

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch3-books
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch3-books

Chapter 3: Bookstore Project 67

Conclusion

Our Bookstore project is now running with Docker and PostgreSQL and we’ve

configured a custom user model. Next up will be a pages app for our static pages.

Chapter 4: Pages App
Let’s build a homepage for our new project. For now this will be a static page meaning

it will not interact with the database in any way. Later on it will be a dynamic page

displaying books for sale but… one thing at a time.

It’s common to have multiple static pages in even a mature project such as an About

page so let’s create a dedicated pages app for them.

On the command line use the startapp command again to make a pages app.

Command Line

$ docker-compose exec web python manage.py startapp pages

Then add it to our INSTALLED_APPS setting. We’ll also update TEMPLATES so that Django

will look for a project-level templates folder. By default Django looks within each app

for a templates folder, but organizing all templates in one space is easier to manage.

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Chapter 4: Pages App 69

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig', # new

]

TEMPLATES = [

{

...

'DIRS': [os.path.join(BASE_DIR, 'templates')], # new

...

}

]

Note that updating the DIRS settingmeans that Djangowill also look in this new folder;

it will still look for any templates folders within an app.

Templates

Moving on it’s time to create that new templates directory and put two files within it:

_base.html and home.html. The first base level file will be inherited by all other files;

home.html will be our homepage.

Chapter 4: Pages App 70

Command Line

$ mkdir templates

$ touch templates/_base.html

$ touch templates/home.html

Why call the base template _base.htmlwith the underscore instead of base.html? This

is optional, but some developers prefer to add an underscore _ to denote a file that is

intended to be inherited by other files and not displayed on its own.

In the base file we’ll include the bare minimum needed and add block tags for both

title and content. Block tags give higher-level templates the option to override just

the content within the tags. For example, the homepage will have a title of “Home” but

we want that to appear between html <title></title> tags. Using block tags make it

easier to update this content, as needed, in inherited templates.

Why use the name content for the main content of our project? This name could

be anything–main or some other generic indicator–but using content is a common

naming convention in the Django world. Can you use something else? Absolutely. Is

content the most common one you’ll see? Yes.

Chapter 4: Pages App 71

Code

<!-- templates/_base.html -->

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{% block title %}Bookstore{% endblock title %}</title>

</head>

<body>

<div class="container">

{% block content %}

{% endblock content %}

</div>

</body>

</html>

Now for the homepage which will simply say “Homepage” for now.

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% endblock content %}

Chapter 4: Pages App 72

URLs and Views

Everywebpage in ourDjango project needs a urls.py and views.py file to go alongwith

the template. For beginners the fact that order doesn’t really matter here–we need

all 3 files and really often a 4th, models.py, for the database–is confusing. Generally I

prefer to start with the urls and work from there but there is no “right way” to build

out this connected web of Django files.

Let’s start with our project-level urls.py to set the proper path for webpages within

the pages app. Since we want to create a homepage we add no additional prefix to the

URL route which is designated by the empty string ''. We also import include on the

second line to concisely add the pages app to our main urls.py file.

Code

bookstore_project/urls.py

from django.contrib import admin

from django.urls import path, include # new

urlpatterns = [

path('admin/', admin.site.urls),

path('', include('pages.urls')), # new

]

Next we create a urls.py file within the pages app.

Command Line

$ touch pages/urls.py

This file will import the HomePageView and set the path, again, to the empty string ''.

Chapter 4: Pages App 73

Note that we provide an optional, but recommended, named URL68 of 'home' at the

end. This will come in handy shortly.

Code

pages/urls.py

from django.urls import path

from .views import HomePageView

urlpatterns = [

path('', HomePageView.as_view(), name='home'),

]

Finally we need a views.py file. We can leverage Django’s built-in TemplateView69 so

that the only tweak needed is to specify our desired template, home.html.

Code

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

template_name = 'home.html'

We’re almost done. If you navigate to the homepage now at http://127.0.0.1:8000/70

you’ll actually see an error. But what’s causing it? Since we’re running the container
68https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
69https://docs.djangoproject.com/en/2.2/ref/class-based-views/base/#django.views.generic.base.TemplateView
70http://127.0.0.1:8000/

https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/2.2/ref/class-based-views/base/#django.views.generic.base.TemplateView
http://127.0.0.1:8000/
https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/2.2/ref/class-based-views/base/#django.views.generic.base.TemplateView
http://127.0.0.1:8000/

Chapter 4: Pages App 74

in background detached mode–that -d flag–we must explicitly check the logs to see

console output.

So type docker-compose logs which will turn up an error “ModuleNotFoundError: No

module named ‘pages.urls’”. What’s happening is that Django does not automatically

update the settings.py file for us based on a change. In a non-Docker world stopping

and restarting the server does the trick. We must do the same here which means

typing docker-compose down and then docker-compose up -d to load the new books app

in properly.

Refresh the homepage now and it will work.

Homepage

Tests

Time for tests. For our homepage we can use Django’s SimpleTestCase71 which is a

special subset of Django’s TestCase that is designed for webpages that do not have a

model included.

Testing can feel overwhelming at first, but it quickly becomes a bit boring. You’ll use

the same structure and techniques over and over again. In your text editor, update

the existing pages/tests.py file. We’ll start by testing the template.

71https://docs.djangoproject.com/en/2.2/topics/testing/tools/#simpletestcase

https://docs.djangoproject.com/en/2.2/topics/testing/tools/#simpletestcase
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#simpletestcase

Chapter 4: Pages App 75

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):

response = self.client.get('/')

self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

At the top we import SimpleTestCase as well as reverse72 which is useful for testing

our URLs. Then we create a class called HomepageTests that extends SimpleTestCase

and within it add a method for each unit test.

Note that we’re adding self as the first argument of each unit test. This is a Python

convention73 that is worth repeating.

It is best to be overly descriptive with your unit test names but be aware that each

method must start with test to be run by the Django test suite.

The two tests here both check that the HTTP status code for the homepage equals

200 which means that it exists. It does not yet tell us anything specific about the

contents of the page. For test_homepageview_status_code we’re creating a variable
72https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#reverse
73https://docs.python.org/3/tutorial/classes.html#random-remarks

https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#reverse
https://docs.python.org/3/tutorial/classes.html#random-remarks
https://docs.python.org/3/tutorial/classes.html#random-remarks
https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#reverse
https://docs.python.org/3/tutorial/classes.html#random-remarks

Chapter 4: Pages App 76

called response that accesses the homepage (/) and then uses Python’s assertEqual74

to check that the status codematches 200. A similar pattern exists for test_homepage_-

url_name except that we are calling the URL name of home via the reverse method.

Recall that we added this to the pages/urls.py file as a best practice. Even if we change

the actual route of this page in the future, we can still refer to it by the same homeURL

name.

To run our tests we run the python manage.py test command albeit with the prefix

docker-compose exec web so that it runs within Docker itself.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

..

--

Ran 4 tests in 0.277s

OK

Destroying test database for alias 'default'...

Why does it say 4 tests when we only created 2? Because we’re testing the entire

Django project and in the previous chapter under users/tests.pywe added two tests

for the custom user model. If we wanted to only run tests for the pages app we simply

append that name onto the command so docker-compose exec web python manage.py

test pages.
74https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual

https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual
https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertEqual

Chapter 4: Pages App 77

Testing Templates

So far we’ve tested that the homepage exists, but we should also confirm that it uses

the correct template. SimpleTestCase comeswith amethod assertTemplateUsed75 just

for this purpose! Let’s use it.

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):

response = self.client.get('/')

self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

def test_homepage_template(self): # new

response = self.client.get('/')

self.assertTemplateUsed(response, 'home.html')

We’ve created a response variable again and then checked that the template home.html

is used. Let’s run the tests again.
75https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed

https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.SimpleTestCase.assertTemplateUsed

Chapter 4: Pages App 78

Command Line

$ docker-compose exec web python manage.py test pages

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

...

--

Ran 3 tests in 0.023s

OK

Destroying test database for alias 'default'...

Did you notice something different in that command? We added the name of our app

pages so that only the tests within that app were run. At this early state it’s fine to run

all the tests, but in larger projects if you know that you’ve only added tests within a

specific app, it can save time to just run the updated/new tests and not the entire

suite.

Testing HTML

Let’s now confirm that our homepage has the correct HTML code and also does not

have incorrect text. It’s always good to test both that tests pass and that tests we

expect to fail do, actually, fail!

Chapter 4: Pages App 79

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse, resolve

from .views import HomePageView

class HomepageTests(SimpleTestCase):

def test_homepage_status_code(self):

response = self.client.get('/')

self.assertEqual(response.status_code, 200)

def test_homepage_url_name(self):

response = self.client.get(reverse('home'))

self.assertEqual(response.status_code, 200)

def test_homepage_template(self):

response = self.client.get('/')

self.assertTemplateUsed(response, 'home.html')

def test_homepage_contains_correct_html(self): # new

response = self.client.get('/')

self.assertContains(response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self): # new

response = self.client.get('/')

self.assertNotContains(

Chapter 4: Pages App 80

response, 'Hi there! I should not be on the page.')

Run the tests again.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.....

--

Ran 7 tests in 0.279s

OK

Destroying test database for alias 'default'...

setUp Method

Have you noticed that we seem to be repeating ourself with these unit tests? For each

one we are loading a response variable. That seems wasteful and prone to errors. It’d

be better to stick to something more DRY (Don’t Repeat Yourself).

Since the unit tests are executed top-to-bottom we can add a setUpmethod that will

be run before every test. It will set self.response to our homepage so we no longer

need to define a response variable for each test. This also means we can remove the

test_homepage_url_name test since we’re using the reverse on home each time in setUp.

Chapter 4: Pages App 81

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse

class HomepageTests(SimpleTestCase): # new

def setUp(self):

url = reverse('home')

self.response = self.client.get(url)

def test_homepage_status_code(self):

self.assertEqual(self.response.status_code, 200)

def test_homepage_template(self):

self.assertTemplateUsed(self.response, 'home.html')

def test_homepage_contains_correct_html(self):

self.assertContains(self.response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self):

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

Now run the tests again. Because setUp is a helper method and does not start with

test it will not be considered a unit test in the final tally. So only 4 tests will run.

Chapter 4: Pages App 82

Command Line

$ docker-compose exec web python manage.py test pages

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

....

--

Ran 4 tests in 0.278s

OK

Destroying test database for alias 'default'...

Resolve

A final views check we can do is that our HomePageView “resolves” a given URL path.

Django contains the utility function resolve76 for just this purpose. We will need to

import both resolve as well as the HomePageView at the top of the file.

Our actual test, test_homepage_url_resolves_homepageview, checks that the name of

the view used to resolve /matches HomePageView.

76https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#resolve

https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#resolve
https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#resolve

Chapter 4: Pages App 83

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse, resolve # new

from .views import HomePageView # new

class HomepageTests(SimpleTestCase):

def setUp(self):

url = reverse('home')

self.response = self.client.get(url)

def test_homepage_status_code(self):

self.assertEqual(self.response.status_code, 200)

def test_homepage_template(self):

self.assertTemplateUsed(self.response, 'home.html')

def test_homepage_contains_correct_html(self):

self.assertContains(self.response, 'Homepage')

def test_homepage_does_not_contain_incorrect_html(self):

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_homepage_url_resolves_homepageview(self): # new

view = resolve('/')

Chapter 4: Pages App 84

self.assertEqual(

view.func.__name__,

HomePageView.as_view().__name__

)

Phew. That’s our last test. Let’s confirm that everything passes.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.....

--

Ran 7 tests in 0.282s

OK

Destroying test database for alias 'default'...

Git

Time to add our new changes to source control with Git.

Chapter 4: Pages App 85

Command Line

$ git status

$ git add .

$ git commit -m 'ch4'

You can compare with the official source code on Github77 for this chapter.

Conclusion

We have configured our templates and added the first page to our project, a static

homepage. We also added tests which should always be included with new code

changes. Some developers prefer a method called Test-Driven Development where

they write the tests first and then the code. Personally I prefer to write the tests

immediately after which is what we’ll do here.

Both approaches work, the key thing is to be rigorous with your testing. Django

projects quickly grow in size where it’s impossible to remember all the working pieces

in your head. And if you areworking on a team, it is a nightmare towork on an untested

codebase. Who knows what will break?

In the next chapter we’ll add user registration to our project: log in, log out, and sign

up.
77https://github.com/wsvincent/djangoforprofessionals/tree/master/ch4-pages

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch4-pages
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch4-pages

Chapter 5: User Registration
User registration is a core feature in any dynamic website. And it will be in our

Bookstore project, too. In this chapter we will implement log in, log out, and sign

up functionality. The first two are relatively straightforward since Django provides

us with the necessary views and urls for them, however sign up is more challenging

since there is no built-in solution.

Auth App

Let’s begin by implementing log in and log out using Django’s own auth78 app. Django

provides us with the necessary views and urls which means we only need to update

a template for things to work. This saves us a lot of time as developers and it ensures

that we don’t make a mistake since the underlying code has already been tested and

used by millions of developers.

However this simplicity comes at the cost of feeling “magical” to Django newcomers.

We covered some of these steps previously in my book, Django for Beginners79,

but we did not slow down and look at the underlying source code. The intention

for a beginner was to broadly explain and demonstrate “how” to implement user

registration properly, but this came at the cost of truly diving into “why” we used

the code we did.

Since this is a more advanced book, we delve deeper to understand the underlying

source code better. The approach here can also be used to explore any other built-in

Django functionality on your own.
78https://docs.djangoproject.com/en/2.2/topics/auth/default/
79https://djangoforbeginners.com

https://docs.djangoproject.com/en/2.2/topics/auth/default/
https://djangoforbeginners.com/
https://docs.djangoproject.com/en/2.2/topics/auth/default/
https://djangoforbeginners.com/

Chapter 5: User Registration 87

The first thing we need to do is make sure the auth app is included in our INSTALLED_-

APPS setting. We have added our own apps here previously, but have you ever taken

a close look at the built-in apps Django adds automatically for us? Most likely the

answer is no. Let’s do that now!

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth', # Yoohoo!!!!

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

]

There are, in fact, 6 apps already there that Django provides for us which power the

site. The first is admin and the second is auth. This is how we know the auth app is

already present in our Django project.

When we earlier ran the migrate command for the first time all of these apps were

linked together in the initial database. And remember that we used the AUTH_USER_-

MODEL setting to tell Django to use our custom user model, not the default Usermodel

here. This is why we had to wait until that configuration was complete before running

migrate for the first time.

Chapter 5: User Registration 88

Auth URLs and Views

To use Django’s built-in auth app we must explicitly add it to our bookstore_-

project/urls.py file. The easiest approach is to use accounts/ as the prefix since that

is commonly used in the Django community. Make the one line change below. Note

that as our urls.py file grows in length, adding comments for each type of URL–admin,

user management, local apps, etc.–helps with readability.

Code

bookstore_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('django.contrib.auth.urls')), # new

Local apps

path('', include('pages.urls')),

]

What’s included in the auth app? A lot it turns out. First off, there are a number of

associated urls.

Chapter 5: User Registration 89

Code

accounts/login/ [name='login']

accounts/logout/ [name='logout']

accounts/password_change/ [name='password_change']

accounts/password_change/done/ [name='password_change_done']

accounts/password_reset/ [name='password_reset']

accounts/password_reset/done/ [name='password_reset_done']

accounts/reset/<uidb64>/<token>/ [name='password_reset_confirm']

accounts/reset/done/ [name='password_reset_complete']

How did I know that? Two ways. The first is the official auth docs80 tell us so! But a

second, deeper approach is to look at the Django source code which is available on

Github81. If we navigate or search around we’ll find our way to the auth app itself82.

And within that we can find the urls.py file at this link83 which shows the complete

source code.

It takes practice to understand the Django source code, but it is well worth the time.

Homepage

What’s next? Let’s update our existing homepage so that it will notify us if a user is

already logged in or not which currently can only happen via the admin.

Here is the new code for the templates/home.html file. It uses the Django templating

engine’s if/else84 tags for basic logic.

80https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
81https://github.com/django/django
82https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
83https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/

urls.py
84https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#if

https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#if
https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#if

Chapter 5: User Registration 90

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% if user.is_authenticated %}

Hi {{ user.email }}!

{% else %}

<p>You are not logged in</p>

Log In

{% endif %}

{% endblock content %}

If the user is logged in (authenticated), we display a greeting that says “Hi” and

includes their email address. These are both variables85 which we can use with

Django’s template engine via double opening {{ and closing }} brackets.

The default User contains numerous fields including is_authenticated86 and email87

which are referenced here.

And the logout and login are URL names. The url88 template tag means if we specify

the URL name the link will automatically refer to that URL path. For example, in the

previous chapter we set the name of our homepage URL to home so a link to the

homepage would take the format of {% url 'home' %}. More on this shortly.
85https://docs.djangoproject.com/en/2.2/topics/templates/#variables
86https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
87https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.email
88https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url

https://docs.djangoproject.com/en/2.2/topics/templates/#variables
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.email
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
https://docs.djangoproject.com/en/2.2/topics/templates/#variables
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.email
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url

Chapter 5: User Registration 91

If you look at the homepage now at http://127.0.0.1:8000/89 it will likely show the

email address of your superuser account since we used it previously to log in.

Homepage with greeting

In the admin over at http://127.0.0.1:8000/admin/90 if you click on the “Log out”

button in the upper right corner we can log out of the admin and by extension the

Django project.

Admin logout link

Return to the homepage at http://127.0.0.1:8000/91 and refresh the page.
89http://127.0.0.1:8000/
90http://127.0.0.1:8000/admin/
91http://127.0.0.1:8000/

http://127.0.0.1:8000/
http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/
http://127.0.0.1:8000/
http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/

Chapter 5: User Registration 92

Django Source Code

You might have been able to piece together these steps on your own from reading

the official docs92. But the deeper–and better–approach is to learn how to read the

Django source code on your own.

One question is, how was the user and its related variables magically available in our

template? The answer is that Django has a concept called the template context93

which means each template is loaded with data from the corresponding views.py file.

We can use userwithin template tags to accessUser attributes. In otherwords, Django

just gives this to us automatically.

So to check if a user is logged in or not, we access user and then can use the boolean

is_authenticated94 attribute. If a user is logged in, it will return True and we can do

things like display the user’s email. Or if no user is logged in, the result will be False.

Moving on we have the URL name login. Where did that come from? The answer, of

course, is from Django itself! Let’s unpack the code snippet {% url 'login' %} piece

by piece.

First up we’re using the url template tag95 which takes as its first argument a named

URL pattern96. That’s the optional name sectionwe add as a best practice to all our URL

paths. Therefore there must be a 'login' name attached to the URL used by Django

for log ins, right!

There are two ways we could have known this. In other words, if I hadn’t just told you

that we wanted to use {% url 'login' %}, how could you have figured it out?

First look at the official documentation97. Personally I often use the search feature so
92https://docs.djangoproject.com/en/2.2/topics/auth/default/
93https://docs.djangoproject.com/en/2.2/topics/auth/default/#authentication-data-in-templates
94https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
95https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
96https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
97https://docs.djangoproject.com/en/2.2/

https://docs.djangoproject.com/en/2.2/topics/auth/default/
https://docs.djangoproject.com/en/2.2/topics/auth/default/#authentication-data-in-templates
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/2.2/
https://docs.djangoproject.com/en/2.2/topics/auth/default/
https://docs.djangoproject.com/en/2.2/topics/auth/default/#authentication-data-in-templates
https://docs.djangoproject.com/en/2.2/ref/contrib/auth/#django.contrib.auth.models.User.is_authenticated
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
https://docs.djangoproject.com/en/2.2/topics/http/urls/#naming-url-patterns
https://docs.djangoproject.com/en/2.2/

Chapter 5: User Registration 93

I would have typed in something like “login” and then clicked around until I found a

description of log in. The one we want is actually called authentication views98 and

lists the corresponding URL patterns for us.

Code

accounts/login/ [name='login']

accounts/logout/ [name='logout']

accounts/password_change/ [name='password_change']

accounts/password_change/done/ [name='password_change_done']

accounts/password_reset/ [name='password_reset']

accounts/password_reset/done/ [name='password_reset_done']

accounts/reset/<uidb64>/<token>/ [name='password_reset_confirm']

accounts/reset/done/ [name='password_reset_complete']

This tells us at the path accounts/login/ is where “login” is located and its name is

'login'. A little confusing at first, but here is the info we need.

Going a step deeper to phase two, we can investigate the underlying Django source

code to see “logout” in action. If you perform a search over on Github99 you’ll

eventually find the auth app itself100. Ok, now let’s start by investigating the urls.py

file. Here is the link101 to the complete code:

98https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
99https://github.com/django/django
100https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
101https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/

urls.py

https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py
https://docs.djangoproject.com/en/2.2/topics/auth/default/#module-django.contrib.auth.views
https://github.com/django/django
https://github.com/django/django/tree/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/urls.py

Chapter 5: User Registration 94

Code

django/contrib/auth/urls.py

from django.contrib.auth import views

from django.urls import path

urlpatterns = [

path('login/', views.LoginView.as_view(), name='login'),

path('logout/', views.LogoutView.as_view(), name='logout'),

path('password_change/', views.PasswordChangeView.as_view(),

name='password_change'),

path('password_change/done/', views.PasswordChangeDoneView.as_view(),

name='password_change_done'),

path('password_reset/', views.PasswordResetView.as_view(),

name='password_reset'),

path('password_reset/done/', views.PasswordResetDoneView.as_view(),

name='password_reset_done'),

path('reset/<uidb64>/<token>/', views.PasswordResetConfirmView.as_view(),

name='password_reset_confirm'),

path('reset/done/', views.PasswordResetCompleteView.as_view(),

name='password_reset_complete'),

]

Here is the underlying code Django uses itself for the auth app. I hope you can see

that the “logout” route is not magic. It’s right there in plain sight, it uses the view

LogoutView and has the URL name 'logout'. Not magic at all! Just a little challenging

to find the first time.

This three-step process is a great way to learn: either remember the Django shortcut,

Chapter 5: User Registration 95

look it up in the docs, or on occasion dive into the source code and truly understand

where all this goodness comes from.

Log In

Back on our basic homepage, click on the “Log In” link and… it results in an error!

Log in template not exist error

Django is throwing a TemplateDoesNotExist error at us. Specifically, it seems to expect

a log in template at registration/login.html. In addition to Django telling us this,

we can look in the documentation102 and see that the desired template_name has that

location.

But let’s really be sure and check the source code so we can remove any perceived

magic here. After all, it’s just Django.

Back in the auth/views.py103 file we can see on line 45 for LoginView that the

template_name is 'registration/login.html'. So if we wanted to change the default

location we could, but it would mean overriding LoginView which seems like overkill.
102https://docs.djangoproject.com/en/2.2/topics/auth/default/#all-authentication-views
103https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/

views.py

https://docs.djangoproject.com/en/2.2/topics/auth/default/#all-authentication-views
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/views.py
https://docs.djangoproject.com/en/2.2/topics/auth/default/#all-authentication-views
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/views.py
https://github.com/django/django/blob/b9cf764be62e77b4777b3a75ec256f6209a57671/django/contrib/auth/views.py

Chapter 5: User Registration 96

Let’s just use what Django gives us here.

Create a new registration folder within the existing templates directory and then

add our login.html file there, too.

Command Line

$ mkdir templates/registration

$ touch templates/registration/login.html

The actual code is as follows. We extend our base template, add a title, and then

specify that we want to use a form that will “post” or send the data.

Code

<!-- templates/registration/login.html -->

{% extends '_base.html' %}

{% block title %}Log In{% endblock title %}

{% block content %}

<h2>Log In</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Log In</button>

</form>

{% endblock content %}

You should always add CSRF protection104 on any submittable form. Otherwise a

malicious website can change the link and attack the site and the user. Django has
104https://docs.djangoproject.com/en/2.2/ref/csrf/

https://docs.djangoproject.com/en/2.2/ref/csrf/
https://docs.djangoproject.com/en/2.2/ref/csrf/

Chapter 5: User Registration 97

CSRF middleware to handle this for us; all we need to do is add {% csrf_token %} tags

at the start of the form.

Next we can control the look of the form contents. For now we’ll use as_p()105 so that

each form field is displayed within a paragraph p tag.

With that explanation out of the way, let’s check if our new template is working

correctly. Go to http://127.0.0.1:8000/accounts/login/106.

Log in page

And there is our page! Lovely. You can navigate back to the homepage and confirm

that the “Log In” link works too if you like. As a final step, go ahead and try log in.

Redirects

Did you notice I said “try” in that last sentence? If you click on the “Log In” link it

brings up a Page not found (404) error.
105https://docs.djangoproject.com/en/2.2/ref/forms/api/#as-p
106http://127.0.0.1:8000/accounts/login/

https://docs.djangoproject.com/en/2.2/ref/forms/api/#as-p
http://127.0.0.1:8000/accounts/login/
https://docs.djangoproject.com/en/2.2/ref/forms/api/#as-p
http://127.0.0.1:8000/accounts/login/

Chapter 5: User Registration 98

Page not found error

It seems Django has redirected us to 127.0.0.1:8000/accounts/profile/ yet no such

page exists. Now why would Django do this? Well, if you think about it, how does

Django know where we want to redirect the user after log in? Maybe it’s the home-

page. But maybe it’s a user profile page. Or any number of options.

The final piece of the log in puzzle is to set the proper configuration for LOGIN_-

REDIRECT_URL107 because by default it redirects to accounts/profile.

Fortunately this is a quick fix. We’ll send the user to our homepage. And since we

specified a URL name of home that’s all we need to redirect logged in users to the

homepage.

At the bottom of the bookstore_project/settings.py file add this one line.

107https://docs.djangoproject.com/en/2.2/ref/settings/#login-redirect-url

https://docs.djangoproject.com/en/2.2/ref/settings/#login-redirect-url
https://docs.djangoproject.com/en/2.2/ref/settings/#login-redirect-url
https://docs.djangoproject.com/en/2.2/ref/settings/#login-redirect-url

Chapter 5: User Registration 99

Code

bookstore_project/settings.py

LOGIN_REDIRECT_URL = 'home'

Refresh the webpage and you will see it notices the change and provides us with the

generic “You are not logged in” greeting.

Homepage logged out

Log Out

Now let’s add a log out option to our homepage since only a superuser will have access

to the admin. How do we do this?

If you look at the auth views above we can see that logout uses LogoutView, which we

could explore in the source code, and has a URL name of logout. That means we can

refer to it with a template tag as just logout.

But we can set this ourself, if desired, using LOGOUT_REDIRECT_URL108 which can

be added to the bottom of our bookstore_project/settings.py file. Let’s do that so a

logged out user is redirected to the homepage.

108https://docs.djangoproject.com/en/2.2/ref/settings/#logout-redirect-url

https://docs.djangoproject.com/en/2.2/ref/settings/#logout-redirect-url
https://docs.djangoproject.com/en/2.2/ref/settings/#logout-redirect-url

Chapter 5: User Registration 100

Code

bookstore_project/settings.py

LOGIN_REDIRECT_URL = 'home'

LOGOUT_REDIRECT_URL = 'home' # new

Then add the logout link to templates/home.html.

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% if user.is_authenticated %}

Hi {{ user.email }}!

<p>Log Out</p>

{% else %}

<p>You are not logged in</p>

Log In

{% endif %}

{% endblock content %}

Go back into the admin at http://127.0.0.1:8000/admin/109 to log in. Then navigate to

the homepage http://127.0.0.1:8000/110 which now has the “Log out” link.
109http://127.0.0.1:8000/admin/
110http://127.0.0.1:8000/

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/
http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/

Chapter 5: User Registration 101

Homepage with logout link

If you click on it you will be logged out and see our homepage with a log in link.

Sign Up

Implementing a sign up page for user registration is completely up to us. We’ll go

through the standard steps for any new page:

• add a URL path in users/urls.py

• update bookstore_project/urls.py to point to the users app

• create a users/views.py file

• create a signup.html template

• update _base.html to display the sign up page

A common question is: what’s the right order for implementing these steps? Honestly

it doesn’t matter since we need all of them for the sign up page to work properly.

Generally I like to start with urls, then switch to views, and finally templates but it’s a

matter of personal preference.

To start create a urls.py file within the users app. Up to this point it only contains our

CustomUser in the models.py file; we haven’t configured any routes or views.

Chapter 5: User Registration 102

Command Line

$ touch users/urls.py

The URL path for the sign up page will take a view called SignupPageView (which we’ll

create next), at the route signup/, and have a name of signupwhich we can later use to

refer to the page with a url template tag. The existing url names for login and signup

are written within the built-in Django app file django/contrib/auth/urls.py we saw

above.

Code

users/urls.py

from django.urls import path

from .views import SignupPageView

urlpatterns = [

path('signup/', SignupPageView.as_view(), name='signup'),

]

Next update the bookstore_project/urls.py file to include the users app. We can

create any route we like but it’s common to use the same accounts/ one used by the

default auth app. Note that it’s important to include the path for users.urls below:

URL paths are loaded top-to-bottom so this ensures that any auth URL paths will be

loaded first.

Chapter 5: User Registration 103

Code

bookstore_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('django.contrib.auth.urls')),

Local apps

path('accounts/', include('users.urls')), # new

path('', include('pages.urls')),

]

Now we can create our view which will be called SignupPageView. It references the

CustomUserCreationForm, has a success_url that points to the login pagemeaning after

the form is submitted the user will be redirected there. And the template_name will be

signup.html.

Chapter 5: User Registration 104

Code

users/views.py

from django.urls import reverse_lazy

from django.views import generic

from .forms import CustomUserCreationForm

class SignupPageView(generic.CreateView):

form_class = CustomUserCreationForm

success_url = reverse_lazy('login')

template_name = 'signup.html'

Finally we have our template. Create a signup.html file within our existing templates

directory.

Command Line

$ touch templates/signup.html

The code is basically identical to the log in page.

Chapter 5: User Registration 105

Code

<!-- templates/signup.html -->

{% extends '_base.html' %}

{% block title %}Sign Up{% endblock title %}

{% block content %}

<h2>Sign Up</h2>

<form method="post">

{% csrf_token %}

{{ form.as_p }}

<button type="submit">Sign Up</button>

</form>

{% endblock content %}

As a final step we can add a line for “Sign Up” to our home.html template right below

the link for “Log In”. This is a one-line change.

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% if user.is_authenticated %}

Hi {{ user.email }}!

<p>Log Out</p>

Chapter 5: User Registration 106

{% else %}

<p>You are not logged in</p>

Log In

Sign Up

{% endif %}

{% endblock content %}

All done! Reload the homepage to see our work.

Homepage with Signup

The “Sign Up” link will redirect us to http://127.0.0.1:8000/accounts/signup/111.

Signup page

Create a new user with the email address testuser@email.com, username of testuser,
111http://127.0.0.1:8000/accounts/signup/

http://127.0.0.1:8000/accounts/signup/
http://127.0.0.1:8000/accounts/signup/

Chapter 5: User Registration 107

and testpass123 for the password. Upon submission it will redirect us to the Log In

page. Attempt to log in with this new account.

Homepage with testuser greeting

Tests

For tests we do not need to test log in and log out features since those are built into

Django and already have tests. We do need to test our sign up functionality though!

Let’s start by creating a setUpmethod that loads our page. Then we’ll populate test_-

signup_template with tests for the status code, template used, and both included and

excluded text similarly to how we did it in the last chapter for the homepage.

In your text editor, update the users/tests.py file with these changes.

Code

users/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

from django.urls import reverse # new

class CustomUserTests(TestCase):

...

Chapter 5: User Registration 108

class SignupPageTests(TestCase): # new

def setUp(self):

url = reverse('signup')

self.response = self.client.get(url)

def test_signup_template(self):

self.assertEqual(self.response.status_code, 200)

self.assertTemplateUsed(self.response, 'signup.html')

self.assertContains(self.response, 'Sign Up')

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

Then run our tests.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

........

--

Ran 8 tests in 0.329s

OK

Destroying test database for alias 'default'...

Next we can test that our CustomUserCreationForm is being used and that the page

resolves to SignupPageView.

Chapter 5: User Registration 109

Code

users/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

from django.urls import reverse, resolve # new

from .forms import CustomUserCreationForm # new

from .views import SignupPageView # new

class CustomUserTests(TestCase):

...

class SignupPageTests(TestCase):

def setUp(self):

url = reverse('signup')

self.response = self.client.get(url)

def test_signup_template(self):

self.assertEqual(self.response.status_code, 200)

self.assertTemplateUsed(self.response, 'signup.html')

self.assertContains(self.response, 'Sign Up')

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_signup_form(self): # new

form = self.response.context.get('form')

self.assertIsInstance(form, CustomUserCreationForm)

Chapter 5: User Registration 110

self.assertContains(self.response, 'csrfmiddlewaretoken')

def test_signup_view(self): # new

view = resolve('/accounts/signup/')

self.assertEqual(

view.func.__name__,

SignupPageView.as_view().__name__

)

Run our tests again.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

..........

--

Ran 10 tests in 0.328s

OK

Destroying test database for alias 'default'...

All done.

setUpTestData()

Django 1.8 introduced a major update to TestCase112 that added the ability to run tests

both within a whole class and for each individual test. In particular, setUpTestData()113

112https://docs.djangoproject.com/en/2.2/releases/1.8/#testcase-data-setup
113https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase.setUpTestData

https://docs.djangoproject.com/en/2.2/releases/1.8/#testcase-data-setup
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase.setUpTestData
https://docs.djangoproject.com/en/2.2/releases/1.8/#testcase-data-setup
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.TestCase.setUpTestData

Chapter 5: User Registration 111

allows the creation of initial data at the class level that can be applied to the entire

TestCase. This results in much faster tests than using setUp(), however, care must be

taken not to modify any objects created in setUpTestData() in your test methods.

We will use setUp() in this book, but be aware that if your test suite seems sluggish,

setUpTestData() is a potential optimization to look into.

Git

As ever make sure to save our work by adding changes into Git.

Command Line

$ git status

$ git add .

$ git commit -m 'ch5'

The official source code is located on Github114 if you want to compare your code.

Conclusion

Our Bookstore project is not the most beautiful site in the world, but it is very

functional at this point. In the next chapter we’ll configure our static assets and add

Bootstrap for improved styling.
114https://github.com/wsvincent/djangoforprofessionals/tree/master/ch5-user-registration

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch5-user-registration
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch5-user-registration

Chapter 6: Static Assets
Static assets like CSS, JavaScript, and images are a core component of anywebsite and

Django provides us with a large degree of flexibility around their configuration and

storage. In this chapter we’ll configure our initial static assets and add Bootstrap115 to

our project for improved styling.

staticfiles app

Django relies on the staticfiles app116 to manage static files from across our entire

project, make them accessible for rapid local development on the file system, and also

combine them into a single location that can be served in a better performingmanner

in production. This process and the distinction between local and production static

files confuses many Django newcomers.

To start we’ll update the staticfiles app117 configuration in settings.py.

STATIC_URL

The first static file setting, STATIC_URL118, is already included for us in the bookstore_-

project/settings.py file.

115https://getbootstrap.com/
116https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/
117https://docs.djangoproject.com/en/2.2/ref/settings/#static-files
118https://docs.djangoproject.com/en/2.2/ref/settings/#static-url

https://getbootstrap.com/
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/2.2/ref/settings/#static-files
https://docs.djangoproject.com/en/2.2/ref/settings/#static-url
https://getbootstrap.com/
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/
https://docs.djangoproject.com/en/2.2/ref/settings/#static-files
https://docs.djangoproject.com/en/2.2/ref/settings/#static-url

Chapter 6: Static Assets 113

Code

bookstore_project/settings.py

STATIC_URL = '/static/'

This sets the URL that we can use to use to reference static files. Note that it is

important to include a trailing slash / at the end of the directory name.

STATICFILES_DIRS

Next up is STATICFILES_DIRS119 which defines the location of static files in local

development. In our project these will all live within a top-level static directory.

Code

bookstore_project/settings.py

STATIC_URL = '/static/'

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'),] # new

It’s often the case that there will be multiple directories with static files within a

project so Python brackets [], which denote a list120, are typically added here to

accommodate future additions.

STATIC_ROOT

STATIC_ROOT121 is the location of static files for production so it must be set to

a different name, typically staticfiles. When it comes time to deploy a Django

project, the collectstatic122 command will automatically compile all available static
119https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-dirs
120https://docs.python.org/3.7/tutorial/datastructures.html#more-on-lists
121https://docs.djangoproject.com/en/2.2/ref/settings/#static-root
122https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#django-admin-collectstatic

https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-dirs
https://docs.python.org/3.7/tutorial/datastructures.html#more-on-lists
https://docs.djangoproject.com/en/2.2/ref/settings/#static-root
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#django-admin-collectstatic
https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-dirs
https://docs.python.org/3.7/tutorial/datastructures.html#more-on-lists
https://docs.djangoproject.com/en/2.2/ref/settings/#static-root
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#django-admin-collectstatic

Chapter 6: Static Assets 114

files throughout the entire project into a single directory. This is far faster than having

static files sprinkled across the project as is the case in local development.

Code

bookstore_project/settings.py

STATIC_URL = '/static/'

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'),]

STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles') # new

STATICFILES_FINDERS

The last setting is STATICFILES_FINDERS123 which tells Django how to look for static

file directories. It is implicitly set for us and although this is an optional step, I prefer

to make it explicit in all projects.

Code

bookstore_project/settings.py

STATICFILES_FINDERS = [

"django.contrib.staticfiles.finders.FileSystemFinder",

"django.contrib.staticfiles.finders.AppDirectoriesFinder",

]

The FileSystemFinder looks within the STATICFILES_DIRS setting, which we set to

static, for any static files. Then the AppDirectoriesFinder looks for any directories

named static located within an app, as opposed to located at a project-level static

directory. This setting is read top-to-bottom meaning if a file called static/img.jpg

is first found by FileSystemFinder it will be in place of an img.jpg file located within,

say, the pages app at pages/static/img.jpg.
123https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-finders

https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-finders
https://docs.djangoproject.com/en/2.2/ref/settings/#staticfiles-finders

Chapter 6: Static Assets 115

Our final group of settings therefore should look as follows:

Code

bookstore_project/settings.py

STATIC_URL = '/static/'

STATICFILES_DIRS = [os.path.join(BASE_DIR, 'static'),]

STATIC_ROOT = os.path.join(BASE_DIR, 'staticfiles')

STATICFILES_FINDERS = [

"django.contrib.staticfiles.finders.FileSystemFinder",

"django.contrib.staticfiles.finders.AppDirectoriesFinder",

]

Static Directory

Let’s now add some static files and incorporate them into our project. Even though

we’re referring to a static directory for our files it’s up to us to create it so do that

now along with new subdirectories for CSS, JavaScript, and images.

Command Line

$ mkdir static

$ mkdir static/css

$ mkdir static/js

$ mkdir static/images

Next create a base.css file.

Chapter 6: Static Assets 116

Command Line

$ touch static/css/base.css

We’ll keep things basic and have our h1 headline be red. The point is to show how CSS

can be added to our project, not to delve too deeply into CSS itself.

Code

/* static/css/base.css */

h1 {

color: red;

}

If you refresh the homepage now you’ll see that nothing has changed. That’s because

static assets must be explicitly loaded into the templates. First load all static files at

the top of the page with {% load static %} and then include a link to the base.css file.

The static124 template tag uses STATIC_URL, which we set to /static/, so rather than

needing to write out static/css/base.css we can simply refer to css/base.css.

Code

<!-- templates/_base.html -->

{% load static %}

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{% block title %}Bookstore{% endblock %}</title>

<!-- CSS -->

<link rel="stylesheet" href="{% static 'css/base.css' %}">
124https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-static

https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-static
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-static

Chapter 6: Static Assets 117

</head>

...

Refresh the homepage to see our work. There’s our CSS in action!

Homepage with red text

If instead you see an error screen saying Invalid block tag on line 7: 'static'.

Did you forget to register or load this tag? then you forgot to include the line {%

load static %} at the top of the file. I do this all the time myself.

Images

How about an image? You can download the book cover forDjango for Professionals at

this link125. Save it into the directory books/static/images as djangoforprofessionals.jpg.

To display it on the homepage, update templates/home.html. Add both the {% load

static %} tags at the top and on the next-to-last line the link for the file.

125https://wsvincent.com/assets/images/djangoforprofessionals.jpg

https://wsvincent.com/assets/images/djangoforprofessionals.jpg
https://wsvincent.com/assets/images/djangoforprofessionals.jpg

Chapter 6: Static Assets 118

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% if user.is_authenticated %}

<p>Hi {{ user.email }}!</p>

<p>Log Out</p>

{% else %}

<p>You are not logged in</p>

<p>Log In |

Sign Up</p>

{% endif %}

{% endblock content %}

Refreshing the homepage you’ll see the raw file is quite large! Let’s control that with

some additional CSS.

Chapter 6: Static Assets 119

Code

/* static/css/base.css */

h1 {

color: red;

}

.bookcover {

height: 300px;

width: auto;

}

Now update the homepage and the book cover image fits nicely.

Homepage with Book Cover

Chapter 6: Static Assets 120

JavaScript

To add JavaScript we’ll go through a similar process. Create a new file called base.js.

Command Line

$ touch static/js/base.js

Often I put a tracking code of some kind here, such as for Google Analytics, but for

demonstration purposes we’ll add a console.log statement so we can confirm the

JavaScript loaded correctly.

Code

// static/js/base.js

console.log('JavaScript here!')

Now add it to our _base.html template. JavaScript should be added at the bottom of

the file so it is loaded last, after the HTML, CSS, and other assets that appear first

on the screen when rendered in the web browser. This gives the appearance of the

complete webpage loading faster.

Chapter 6: Static Assets 121

Code

<!-- templates/_base.html -->

{% load static %}

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{% block title %}Bookstore{% endblock title %}</title>

<!-- CSS -->

<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>

<body>

<div class="container">

{% block content %}

{% endblock content %}

</div>

<!-- JavaScript -->

{% block javascript %}

<script src="{% static 'js/base.js' %}"></script>

{% endblock javascript %}

</body>

</html>

In your web browser, make the JavaScript console available. This involves opening up

Developer Tools and making sure you’re on the “Console” section. On Chrome which

is being used for the images in this book, go to View in the top menu, then Developer

-> Developer Tools which will open a sidebar. Make sure Console is selected from the

options.

If you refresh the page, you should see the following:

Chapter 6: Static Assets 122

Homepage JavaScript console view

collectstatic

Imagine we wanted to deploy our website right away. Among other steps, we’d need

to run collectstatic126 to create a single, production-ready directory of all the static

files in our project.

Command Line

$ docker-compose exec web python manage.py collectstatic

122 static files copied to '/code/staticfiles'.

If you look within your text editor, there is now a staticfiles directory with four

subdirectories: admin, css, images, and js. The first one is the static assets of theDjango

admin app and the other three we specified. That’s why there are 122 files copied over.
126https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic

https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic

Chapter 6: Static Assets 123

Bootstrap

Writing custom CSS for your website is a worthy goal and something I advise

all software developers, even back-end ones, to try at some point. But practically

speaking there is a reason front-end frameworks like Bootstrap127 exist: they save you

a ton of time when starting a new project. Unless you have a dedicated designer to

collaborate with, stick with a framework for the early iterations of your website.

In this section we’ll add Bootstrap to our project alongside our existing base.css file.

Typing all this out by hand would take a while and be error prone so this is a rare case

where I advise simply copy/pasting from the official source code128.

Note that order matters here for both the CSS and JavaScript. The file will be loaded

top-to-bottom so our base.css file comes after the Bootstrap CSS so our h1 style

overrides the Bootstrap default. At the bottom of the file, it’s similarly important to

load jQuery first, then PopperJS, and only then the Bootstrap JavaScript file.

Finally observe that a navigation header has been added to the project with basic logic

so if a user is logged in, only the “Log Out” link is visible while a logged out user will

see both “Log In” and “Sign Up” links.

127https://getbootstrap.com/
128https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

https://getbootstrap.com/
https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html
https://getbootstrap.com/
https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

Chapter 6: Static Assets 124

Code

<!-- templates/_base.html -->

{% load static %}

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>{% block title %}Bookstore{% endblock title %}</title>

<meta name="viewport" content="width=device-width, initial-scale=1,

shrink-to-fit=no">

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/\

4.3.1/css/bootstrap.min.css" integrity="sha384-ggOyR0iXCbMQv3Xipma34MD+dH/\

1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T" crossorigin="anonymous">

<link rel="stylesheet" href="{% static 'css/base.css' %}">

</head>

<body>

<header>

<!-- Fixed navbar -->

<div class="d-flex flex-column flex-md-row align-items-center p-3 px-md-4

mb-3 bg-white border-bottom shadow-sm">

<a href="{% url 'home' %}" class="navbar-brand my-0 mr-md-auto

font-weight-normal">Bookstore

<nav class="my-2 my-md-0 mr-md-3">

About

{% if user.is_authenticated %}

Log Out

{% else %}

Log In

<a class="btn btn-outline-primary"

Chapter 6: Static Assets 125

href="{% url 'signup' %}">Sign Up

{% endif %}

</nav>

</div>

</header>

<div class="container">

{% block content %}

{% endblock content %}

</div>

<!-- JavaScript -->

<!-- jQuery first, then Popper.js, then Bootstrap JS -->

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js"

integrity="sha384-q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8\

abtTE1Pi6jizo" crossorigin="anonymous"></script>

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.7/\

umd/popper.min.js" integrity="sha384UO2eT0CpHqdSJQ6hJty5KVphtPhzWj9WO1\

clHTMGa3JDZwrnQq4sF86dIHNDz0W1" crossorigin="anonymous"></script>

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/js/\

bootstrap.min.js" integrity="sha384-JjSmVgyd0p3pXB1rRibZUAYoIIy6OrQ6V\

rjIEaFf/nJGzIxFDsf4x0xIM+B07jRM" crossorigin="anonymous"></script>

</body>

</html>

It’s best not to attempt to type this code. Instead copy and paste it from the official

repo129with one noticeable change: on line 18 of the source code,make sure to change

the href tag to # not {% url 'about' %}. In other words it shouldmatch the above code

and look like this:

129https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html
https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html
https://github.com/wsvincent/djangoforprofessionals/blob/master/ch6-static-assets/templates/_base.html

Chapter 6: Static Assets 126

Code

<!-- templates/_base.html -->

About

We’ll add the about page URL route in the next section. If you refresh the homepage

after making these changes it should look as follows:

Homepage with Bootstrap

About Page

Did you notice the navbar link for an About page? Trouble is the page and the link don’t

exist yet. But because we already have a handy pages app it’s quite quick to make one.

Since this will be a static page we don’t need a database model involved. However we

will need a template, view, and url. Let’s start with the template called about.html.

Chapter 6: Static Assets 127

Command Line

$ touch templates/about.html

The page will literally just say “About Page” for now while inheriting from _base.html.

Code

<!-- templates/about.html -->

{% extends '_base.html' %}

{% block title %}About{% endblock title %}

{% block content %}

<h1>About Page</h1>

{% endblock content %}

The view can rely on Django’s built-in TemplateView just like our homepage.

Code

pages/views.py

from django.views.generic import TemplateView

class HomePageView(TemplateView):

template_name = 'home.html'

class AboutPageView(TemplateView): # new

template_name = 'about.html'

And the URL path will be pretty similar as well. Set it to about/, import the appropriate

view, and provide a URL name of about.

Chapter 6: Static Assets 128

Code

pages/urls.py

from django.urls import path

from .views import HomePageView, AboutPageView # new

urlpatterns = [

path('about/', AboutPageView.as_view(), name='about'), # new

path('', HomePageView.as_view(), name='home'),

]

If you go now to http://127.0.0.1:8000/about/130 you can see the About page.

About Page

As a final step, update the link in the navbar to the page. Because we provided a name

in the URL path of about that’s what we’ll use.

On line 18 of _base.html change the line with the About page link to the following:

130http://127.0.0.1:8000/about/

http://127.0.0.1:8000/about/
http://127.0.0.1:8000/about/

Chapter 6: Static Assets 129

Code

<!-- templates/_base.html -->

About

Django Crispy Forms

One last update concerns our forms. The popular 3rd party package django-crispy-

forms131 provides a host of welcome upgrades.

We’ll follow the usual pattern to install it which is: install within Docker, stop our

Docker container and then rebuild it.

Command Line

$ docker-compose exec web pipenv install django-crispy-forms==1.8.0

$ docker-compose down

$ docker-compose up -d --build

Now add crispy forms to the INSTALLED_APPS setting. Note that it’s name needs to be

cripsy_forms here. A nice additional feature is to specify bootstrap4 under CRISPY_-

TEMPLATE_PACK which will provide pre-styled forms for us.

131https://github.com/django-crispy-forms/django-crispy-forms

https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/django-crispy-forms
https://github.com/django-crispy-forms/django-crispy-forms

Chapter 6: Static Assets 130

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

Third-party

'crispy_forms', # new

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

]

django-crispy-forms

CRISPY_TEMPLATE_PACK = 'bootstrap4' # new

To use Crispy Forms we load crispy_forms_tags at the top of a template and add {{

form|crispy }} to replace {{ form.as_p}} for displaying form fields. We will take this

time to also add Bootstrap styling to the Submit button.

Start with templates/signup.html. Make the updates below.

Chapter 6: Static Assets 131

Code

<!-- templates/signup.html -->

{% extends '_base.html' %}

{% load crispy_forms_tags %}

{% block title %}Sign Up{% endblock title %}

{% block content %}

<h2>Sign Up</h2>

<form method="post">

{% csrf_token %}

{{ form|crispy }}

<button class="btn btn-success" type="submit">Sign Up</button>

</form>

{% endblock content %}

Chapter 6: Static Assets 132

Sign Up Page with Crispy Forms

Update login.html as well with crispy_forms_tags at the top and {{ form|crispy }}

in the form.

Chapter 6: Static Assets 133

Code

<!-- templates/registration/login.html -->

{% extends '_base.html' %}

{% load crispy_forms_tags %}

{% block title %}Log In{% endblock title %}

{% block content %}

<h2>Log In</h2>

<form method="post">

{% csrf_token %}

{{ form|crispy }}

<button class="btn btn-success" type="submit">Log In</button>

</form>

{% endblock content %}

Log In Page with Crispy Forms

Chapter 6: Static Assets 134

Tests

Time for tests which will be very similar to those we added previously for our

homepage.

Code

pages/tests.py

from django.test import SimpleTestCase

from django.urls import reverse, resolve

from .views import HomePageView, AboutPageView # new

class HomepageTests(SimpleTestCase):

...

class AboutPageTests(SimpleTestCase): # new

def setUp(self):

url = reverse('about')

self.response = self.client.get(url)

def test_aboutpage_status_code(self):

self.assertEqual(self.response.status_code, 200)

def test_aboutpage_template(self):

self.assertTemplateUsed(self.response, 'about.html')

Chapter 6: Static Assets 135

def test_aboutpage_contains_correct_html(self):

self.assertContains(self.response, 'About Page')

def test_aboutpage_does_not_contain_incorrect_html(self):

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_aboutpage_url_resolves_aboutpageview(self):

view = resolve('/about/')

self.assertEqual(

view.func.__name__,

AboutPageView.as_view().__name__

)

Run the tests.

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

...............

--

Ran 15 tests in 0.433s

OK

Destroying test database for alias 'default'...

Chapter 6: Static Assets 136

Git

Check the status of our changes in this chapter, add them all, and then provide a

commit message.

Command Line

$ git status

$ git add .

$ git commit -m 'ch6'

As alway you can compare your code with the official code on Github132 if there are

any issues.

Conclusion

Static assets are a core part of every website and in Django we have to take a number

of additional steps so they are compiled and hosted efficiently in production. Later

on in the book we’ll learn how to use a dedicated content delivery network (CDN) for

hosting and displaying our project’s static files.
132https://github.com/wsvincent/djangoforprofessionals/tree/master/ch6-static-assets

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch6-static-assets
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch6-static-assets

Chapter 7: Advanced User Registration
At this point we have the standard Django user registration implemented. But often

that’s just the starting point on professional projects. What about customizing things

a bit? For example, Django’s default username/email/password pattern is somewhat

dated these days. It’s far more common to simply require email/password for sign up

and log in. And really every part of the authentication flow–the forms, emails, pages–

can be customized if so desired.

Another major factor in many projects is the need for social authentication, that is

handling sign up and log in via a third-party service like Google, Facebook, and so on.

We could implement our own solutions here from scratch but there are some definite

risks: user registration is a complex area with many moving parts and one area where

we really do not want to make a security mistake.

For this reason, many professional Django developers rely on the popular third-

party django-allauth133. Adding any third party package should come with a degree

of caution since you are adding another dependency to your technical stack. It’s

important to make sure any package is both up-to-date and well tested. Fortunately

django-allauth is both.

At the cost of a little bit of magic it addresses all of these concerns and makes

customization much, much easier.
133https://github.com/pennersr/django-allauth

https://github.com/pennersr/django-allauth
https://github.com/pennersr/django-allauth

Chapter 7: Advanced User Registration 138

django-allauth

Start by installing django-allauth. Because we’re using Pipenv we want to avoid

conflicts with the Pipfile.lock so we’ll install it within Docker first, then stop Docker,

and rebuild our image with the --build flag which prevents the default image caching

and ensures that our entire image is built from scratch.

Command Line

$ docker-compose exec web pipenv install django-allauth==0.40.0

$ docker-compose down

$ docker-compose up -d --build

Our website will still function the same as before since we haven’t explicitly told

Django about this new django-allauth package. To do that we need to update the

INSTALLED_APPS config within our settings.py file adding Django’s built-in, but op-

tional, sites framework134, as well as allauth and its account feature allauth.account.

Django’s sites framework is a powerful feature that allows one Django project to

control multiple sites. Given we only have one site in our project, we’ll set the SITE_ID

to 1. If we added a second site it would have an ID of 2, a third site would have an ID

of 3, and so on.

134https://docs.djangoproject.com/en/2.2/ref/contrib/sites/

https://docs.djangoproject.com/en/2.2/ref/contrib/sites/
https://docs.djangoproject.com/en/2.2/ref/contrib/sites/

Chapter 7: Advanced User Registration 139

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites', # new

Third-party

'crispy_forms',

'allauth', # new

'allauth.account', # new

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

]

django-allauth config

SITE_ID = 1 # new

AUTHENTICATION_BACKENDS

The settings.py file created by Django for any new project contains a number of

explicit settings–those that we see in the file already–as well as a longer additional

Chapter 7: Advanced User Registration 140

list of implicit settings that exist but aren’t visible. This can be confusing at first. The

complete list of settings configurations is available here135.

An example is the AUTHENTICATION_BACKENDS136 setting. Under the hood Django

sets this to 'django.contrib.auth.backends.ModelBackend'which is usedwhenDjango

attempts to authenticate a user.

We could add the following line to settings.py and the current behaviorwould remain

unchanged:

Code

AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',

)

However for django-allauth we need to add its specific authentication options, too,

which will allow us to switch over to using login via e-mail in a moment. So at the

bottom of your settings.py file add the following section:

Code

bookstore_project/settings.py

django-allauth config

SITE_ID = 1

AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',

'allauth.account.auth_backends.AuthenticationBackend', # new

)

135https://docs.djangoproject.com/en/2.2/ref/settings/
136https://docs.djangoproject.com/en/2.2/ref/settings/#authentication-backends

https://docs.djangoproject.com/en/2.2/ref/settings/
https://docs.djangoproject.com/en/2.2/ref/settings/#authentication-backends
https://docs.djangoproject.com/en/2.2/ref/settings/
https://docs.djangoproject.com/en/2.2/ref/settings/#authentication-backends

Chapter 7: Advanced User Registration 141

EMAIL_BACKEND

Another configuration implicitly set is EMAIL_BACKEND137. By default Django will

look for a configured SMTP server138 to send emails.

django-allauth will send such an email upon a successful user registration, which

we can and will customize later, but since we don’t yet have a SMTP server properly

configured, it will result in an error.

The solution, for now, is to have Django output any emails to the command line

console instead. Thus we can override the default, implicit config by using console139

instead of smtp. Add this at the bottom of the settings.py file.

Code

bookstore_project/settings.py

django-allauth config

SITE_ID = 1

AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',

'allauth.account.auth_backends.AuthenticationBackend',

)

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' # new

137https://docs.djangoproject.com/en/2.2/ref/settings/#email-backend
138https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
139https://docs.djangoproject.com/en/2.2/topics/email/#console-backend

https://docs.djangoproject.com/en/2.2/ref/settings/#email-backend
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://docs.djangoproject.com/en/2.2/topics/email/#console-backend
https://docs.djangoproject.com/en/2.2/ref/settings/#email-backend
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
https://docs.djangoproject.com/en/2.2/topics/email/#console-backend

Chapter 7: Advanced User Registration 142

ACCOUNT_LOGOUT_REDIRECT

There’s one more subtle change to make to our configurations at this time. If you look

at the configurations page140 again you’ll see there is a setting for ACCOUNT_LOGOUT_-

REDIRECT that defaults to the path of the homepage at /.

In our current settings.py file we have the following two lines for redirects which

point to the homepage via its URL name of 'home'.

Code

bookstore_project/settings.py

LOGIN_REDIRECT_URL = 'home'

LOGOUT_REDIRECT_URL = 'home'

The issue is that django-allauth’s ACCOUNT_LOGOUT_REDIRECT actually overrides the

built-in LOGOUT_REDIRECT_URL, however, since they both point to the homepage this

change may not be apparent. To future-proof our application since maybe we don’t

want to always redirect to the homepage on logout, we should be explicit here with

the logout redirect.

We can also move the two redirect lines under our django-allauth config section.

This is what the entire django-allauth config section should look like at this time.

140https://django-allauth.readthedocs.io/en/latest/configuration.html

https://django-allauth.readthedocs.io/en/latest/configuration.html
https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 143

Code

bookstore_project/settings.py

django-allauth config

LOGIN_REDIRECT_URL = 'home'

ACCOUNT_LOGOUT_REDIRECT = 'home' # new

SITE_ID = 1

AUTHENTICATION_BACKENDS = (

'django.contrib.auth.backends.ModelBackend',

'allauth.account.auth_backends.AuthenticationBackend',

)

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Given that we have made many changes to our bookstore_project/settings.py file

let’s now run migrate to update our database.

Command Line

$ docker-compose exec web python manage.py migrate

Operations to perform:

Apply all migrations: account, admin, auth, contenttypes, sess

ions, sites, users

Running migrations:

Applying account.0001_initial... OK

Applying account.0002_email_max_length... OK

Applying sites.0001_initial... OK

Applying sites.0002_alter_domain_unique... OK

Chapter 7: Advanced User Registration 144

URLs

We also need to swap out the built-in auth app URLs for django-allauth’s own allauth

app. We’ll still use the same accounts/ URL path, however, since we’ll be using django

allauth’s templates and routes for sign up we can delete the URL path for our users

app, too.

Code

bookstore_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('allauth.urls')), # new

Local apps

path('', include('pages.urls')),

]

At this point we could further delete users/urls.py and users/views.py which were

both created solely for our hand-written sign up page and are no longer being used.

Chapter 7: Advanced User Registration 145

Templates

Django’s auth app looks for templates within a templates/registration directory,

but django-allauth prefers they be located within a templates/account directory. So

we will create a new templates/account directory and then copy over our existing

login.html and signup.html templates into it.

Command Line

$ mkdir templates/account

$ mv templates/registration/login.html templates/account/login.html

$ mv templates/signup.html templates/account/signup.html

It’s easy to add an s onto account here by accident, but don’t or you’ll get an error. The

correct directory is templates/account/.

We can delete the templates/registration directory at this point since it is no longer

needed.

Command Line

$ rm -r templates/registration

rmmeans remove and rmeans do it recursively, which is necessary whenever you are

dealing with a directory. If you’d like further information on this command you can

type man rm to read the manual.

The last step is to update the URL links within both templates/_base.html and

templates/home.html to use django-allauth’s URL names rather than Django’s. We do

this by adding an account_ prefix so Django’s 'logout' will now be 'account_logout',

'login' will be 'account_login', and signup will be account_signup.

Chapter 7: Advanced User Registration 146

Code

<!-- templates/_base.html -->

...

<nav class="my-2 my-md-0 mr-md-3">

About

{% if user.is_authenticated %}

Log Out

{% else %}

Log In

<a class="btn btn-outline-primary"

href="{% url 'account_signup' %}">Sign Up

{% endif %}

</nav>

...

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

{% if user.is_authenticated %}

<p>Hi {{ user.email }}!</p>

<p>Log Out</p>

{% else %}

Chapter 7: Advanced User Registration 147

<p>You are not logged in</p>

<p>Log In |

Sign Up</p>

{% endif %}

{% endblock content %}

And we’re done!

Log In

If you refresh the homepage at http://127.0.0.1:8000141 and then click on the “Log in”

link you’ll see an updated page.

Log In Page

Note the new “Remember Me” box option. This is the first of many configurations142

that django-allauth provides. The default None asks the user if they want their session
141http://127.0.0.1:8000
142https://django-allauth.readthedocs.io/en/latest/configuration.html

http://127.0.0.1:8000/
https://django-allauth.readthedocs.io/en/latest/configuration.html
http://127.0.0.1:8000/
https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 148

to be remembered so they don’t have to log in again. It can also be set to False to not

remember or True to always remember. We’ll choose True which is how a traditional

Django log in page would work.

Under our # django-allauth config section of the bookstore_project/settings.py file

add a new line for this.

Code

bookstore_project/settings.py

django-allauth config

...

ACCOUNT_SESSION_REMEMBER = True # new

Refresh the “Log In” page and the box is gone!

Log In Page No Box

If you try out the log in form with your superuser account it will redirect back to the

homepage with a welcome message. Click on the “Log Out” link.

Chapter 7: Advanced User Registration 149

Log Out Page

Rather than directly log us out django-allauth has an intermediary “Log Out” page

which we can customize to match the rest of our project.

Log Out

Update the default LogOut template by creating a templates/account/logout.html file

to override it.

Command Line

$ touch templates/account/logout.html

Like our other templates it will extend _base.html and include Bootstrap styling on

the submitted button.

Chapter 7: Advanced User Registration 150

Code

<!-- templates/account/logout.html -->

{% extends '_base.html' %}

{% load crispy_forms_tags %}

{% block title %}Log Out{% endblock %}

{% block content %}

<div class="container">

<h1>Log Out</h1>

<p>Are you sure you want to log out?</p>

<form method="post" action="{% url 'account_logout' %}">

{% csrf_token %}

{{ form|crispy }}

<button class="btn btn-danger" type="submit">Log Out</button>

</form>

</div>

{% endblock content %}

Go ahead and refresh the page.

Chapter 7: Advanced User Registration 151

Custom Log Out Page

Sign Up

At the top of ourwebsite, in the nav bar, click on link for “SignUp”which has Bootstrap

and django-crispy-forms styling.

Chapter 7: Advanced User Registration 152

Sign Up Page

An optional customization we can make via django-allauth is to only ask for a

password once. Since we’ll configure password change and reset options later, there’s

less of a risk that a user who types in the password incorrectly will be locked out of

their account.

This change is, if you look at the django-allauth configuration options143, is a one-liner.

143https://django-allauth.readthedocs.io/en/latest/configuration.html

https://django-allauth.readthedocs.io/en/latest/configuration.html
https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 153

Code

bookstore_project/settings.py

django-allauth config

...

ACCOUNT_SIGNUP_PASSWORD_ENTER_TWICE = False # new

Refresh the page and the form will update itself to remove the additional password

line.

Sign Up with Single Password

Now create a new user to confirm everything works. We can call the user testuser1,

use testuser1@email.com as email, and testpass123 as the password.

Upon submit it will redirect you to the homepage.

Chapter 7: Advanced User Registration 154

testuser Homepage

Remember how we configured email to output to the console? django-allauth auto-

matically sends an email upon registrationwhichwe can viewby typing docker-compose

logs.

Command Line

$ docker-compose logs

...

web_1 | Content-Type: text/plain; charset="utf-8"

web_1 | MIME-Version: 1.0

web_1 | Content-Transfer-Encoding: 7bit

web_1 | Subject: [example.com] Please Confirm Your E-mail Address

web_1 | From: webmaster@localhost

web_1 | To: testuser@email.com

web_1 | Date: Sat, 13 Jul 2019 14:04:15 -0000

Chapter 7: Advanced User Registration 155

web_1 | Message-ID: <155266195771.15.17095643701553564393@cdab877c4af3>

web_1 |

web_1 | Hello from example.com!

web_1 |

web_1 | You're receiving this e-mail because user testuser has given yours as

an e-mail address to connect their account.

web_1 |

web_1 | To confirm this is correct, go to http://127.0.0.1:8000/accounts/

confirm-emailMQ:1h4oIn:GYETeK5dRClGjcgA8NbuOoyvafA/

web_1 |

web_1 | Thank you from example.com!

web_1 | example.com

web_1 | ---

...

There it is. Later onwe’ll customize this message and configure a proper email service

to send it to actual users.

Admin

Log in to the admin with your superuser account at http://127.0.0.1:8000/admin/144

and we can see it, too, has changed now that django-allauth is involved.
144http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/

Chapter 7: Advanced User Registration 156

Admin Homepage

There are two new sections: Accounts and Sites courtesy of our recent work. If you

click on the Users section we see our traditional view that shows the three current

user accounts.

Chapter 7: Advanced User Registration 157

Admin Users

Go back to the homepage and click on the section for Sites to see what the Django

sites framework provides. We’ll update both the Domain Name and the Display Name

in a later chapter on configuring email.

Chapter 7: Advanced User Registration 158

Admin Sites

Email Only Login

It’s time to really use django-allauth’s extensive list of configurations145 by switching

over to using just email for login, not username. This requires a few changes. First we’ll

make a username not required, but set email instead to required. Then we’ll require

email to be unique and the authentication method of choice.

145https://django-allauth.readthedocs.io/en/latest/configuration.html

https://django-allauth.readthedocs.io/en/latest/configuration.html
https://django-allauth.readthedocs.io/en/latest/configuration.html

Chapter 7: Advanced User Registration 159

Code

bookstore_project/settings.py

django-allauth config

...

ACCOUNT_USERNAME_REQUIRED = False # new

ACCOUNT_AUTHENTICATION_METHOD = 'email' # new

ACCOUNT_EMAIL_REQUIRED = True # new

ACCOUNT_UNIQUE_EMAIL = True # new

Navigate back to the homepage and click on “Log Out” since you’ll be logged in with

your superuser account. Then click on the navbar link for “Sign Up” and create an

account for testuser2@email.com with testpass123 as the password.

Sign Up Email Only

After being redirected to the homepage upon success, now go into the admin at

http://127.0.0.1:8000/admin/146 to inspect what actually happened. Log in with your

superuser account and navigate to the Users section.
146http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/

Chapter 7: Advanced User Registration 160

Admin Users

We can see that django-allauth automatically populated a username for us based on

the email part before the @. This is because our underlying CustomUsermodel still has

a username field. We didn’t delete it.

While this approach may seem a little hackish, but in fact it works just fine. Fully

removing the username from the custom user model requires the use of Abstract-

BaseUser147, which is an additional, optional step some developers take. It requires

far more coding and understanding so it is not recommended unless you really know

your way around Django’s authentication system!

There is, however, an edge case here that we should confirmwhich is: what happens if

we have testuser2@email.com and then a sign up for testuser2@example.com? Wouldn’t

that result in a username of testuser2 for both which would cause a conflict? Let’s
147https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.

AbstractBaseUser

https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser

Chapter 7: Advanced User Registration 161

try it out!

Log out of the admin, go to the Sign Up Page again and create an account for

testuser2@example.com.

Sign Up Form

Now log back into the admin and go to our Users section.

Chapter 7: Advanced User Registration 162

Admin Users

django-allauth automtically adds a two-digit string to the username. In this case

it is 49 so testuser2 becomes testuser249. This two-digit string will be randomly

generated for us.

Tests

Time for tests. Like any good third-party package django-allauth comes with its own

tests so we don’t need to re-test its core functionality, just confirm that our project

works as expected.

If you run our current test suite there are 3 errors related to SignupPageTests since

we’re using django-allauth now for this rather than our own views, forms, and urls.

Chapter 7: Advanced User Registration 163

Command Line

$ docker-compose exec web python manage.py test

...

Ran 15 tests in 0.363s

FAILED (errors=3)

Let’s update the tests. The first issue is that signup is no longer the correct URL name,

instead we’re using account_signup which is the name django-allauth provides. How

did I know that? I looked at the source code148 and found the URL name.

Another change is the location of the signup.html template which is now located at

account/signup.html.

We’re also not using CustomUserCreationForm anymore, but instead, that provided

by django-allauth so we can remove that test. Remove as well the imports for

CustomUserCreationForm and SignupPageView at the top of the file.

Code

users/tests.py

from django.contrib.auth import get_user_model

from django.test import TestCase

from django.urls import reverse, resolve

class CustomUserTests(TestCase):

...

148https://github.com/pennersr/django-allauth/blob/master/allauth/account/urls.py

https://github.com/pennersr/django-allauth/blob/master/allauth/account/urls.py
https://github.com/pennersr/django-allauth/blob/master/allauth/account/urls.py

Chapter 7: Advanced User Registration 164

class SignupTests(TestCase): # new

username = 'newuser'

email = 'newuser@email.com'

def setUp(self):

url = reverse('account_signup')

self.response = self.client.get(url)

def test_signup_template(self):

self.assertEqual(self.response.status_code, 200)

self.assertTemplateUsed(self.response, 'account/signup.html')

self.assertContains(self.response, 'Sign Up')

self.assertNotContains(

self.response, 'Hi there! I should not be on the page.')

def test_signup_form(self):

new_user = get_user_model().objects.create_user(

self.username, self.email)

self.assertEqual(get_user_model().objects.all().count(), 1)

self.assertEqual(get_user_model().objects.all()

[0].username, self.username)

self.assertEqual(get_user_model().objects.all()

[0].email, self.email)

Run the tests again.

Chapter 7: Advanced User Registration 165

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

..............

--

Ran 14 tests in 0.410s

OK

Destroying test database for alias 'default'...

Social

If you want to add social authentication it’s just a few settings. I have a complete

tutorial online149 for integrating Github. The process is similar for Google, Facebook,

and all the rest django-allauth supports. Here is the complete list of providers150.

Git

As always commit the code changes with Git.

149https://wsvincent.com/django-allauth-tutorial/
150https://django-allauth.readthedocs.io/en/latest/providers.html

https://wsvincent.com/django-allauth-tutorial/
https://wsvincent.com/django-allauth-tutorial/
https://django-allauth.readthedocs.io/en/latest/providers.html
https://wsvincent.com/django-allauth-tutorial/
https://django-allauth.readthedocs.io/en/latest/providers.html

Chapter 7: Advanced User Registration 166

Command Line

$ git status

$ git add .

$ git commit -m 'ch7'

And if there are any issues, compare with the official source code on Github151.

Conclusion

We now have a user registration flow that works and can be quickly extended into

social authentication if needed. In the next chapter we’ll add environment variables

to our project for greater security and flexibility.
151https://github.com/wsvincent/djangoforprofessionals/tree/master/ch7-advanced-user-registration

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch7-advanced-user-registration
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch7-advanced-user-registration

Chapter 8: Environment Variables
Environment variables152 are variables that can be loaded into the operating envi-

ronment of a project at run time as opposed to hard coded into the codebase itself.

They are considered an integral part of the popular Twelve-Factor App Design153

methodology and a Django best practice because they allow a greater level of security

and simpler local/production configurations.

Why greater security? Because we can store truly secret information–database

credentials, API keys, and so on–separate from the actual code base. This is a good

idea because using a version control system, like git, means that it only takes one bad

commit for credentials to be added in there forever. Which means that anyone with

access to the codebase has full control over the project. This is very, very dangerous.

It’s much better to limit who has access to the application and environment variables

provide an elegant way to do so.

A secondary advantage is that environment variables greatly simplify having differ-

ent environments for both local and production code. As we will see, there are a

number of setting configurations that Django uses by default intended to make local

development easier, but which must be changed once the same project is ready for

production.

In a non-Docker environment the current best practice is to use django-environ154,

however, since we’re using Docker it’s possible to add environment variables directly

via our docker-compose.yml file which is what we’ll do.
152https://en.wikipedia.org/wiki/Environment_variable
153https://12factor.net/
154https://github.com/joke2k/django-environ

https://en.wikipedia.org/wiki/Environment_variable
https://12factor.net/
https://github.com/joke2k/django-environ
https://en.wikipedia.org/wiki/Environment_variable
https://12factor.net/
https://github.com/joke2k/django-environ

Chapter 8: Environment Variables 168

.env files

Note that it is also possible to use separate .env files to store the environment

variables and reference them in a docker-compose.yml file. A file that begins with a

period . is known as a hidden file155 and frequently used for configurations. It’s not

really hidden; the file is still there in the directory. However if you type ls, the default

listing of files command to see the contents of a directory, hidden files will not appear.

But they are still there and accessible if you add the flag ls -la.

The advantage of a .env file is that it can be removed from Git via a separate

.gitignore file. However in practice chaining together multiple .env files becomes

quite complicated and while it might make sense on a larger project with many

developers and many levels of access, we will stick to the more straightforward

approach of plugging environment variables directly into a docker-compose.yml file

in this book.

SECRET_KEY

For our first environment variable let’s start with the SECRET_KEY156 configuration in

the bookstore_project/settings.py file. This key is a randomly generated string used

for cryptographic signing157 and created whenever the startproject command is run.

There is a two-step process for adding environment variables: first we add the

values to our docker-compose.yml file and then we replace the hardcoded bookstore_-

project/settings.py value with the environment variable.

Within the docker-compose.yml file start by adding a section called environment under

web services. We will place all our environment variables here. Then add a line called
155https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory
156https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY
157https://docs.djangoproject.com/en/2.2/topics/signing/

https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.2/topics/signing/
https://en.wikipedia.org/wiki/Hidden_file_and_hidden_directory
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECRET_KEY
https://docs.djangoproject.com/en/2.2/topics/signing/

Chapter 8: Environment Variables 169

SECRET_KEY that will = the desired value. This can be a little confusing because the

= symbol can be included in secret keys! To make the structure crystal clear: if our

secret key were dog then the line would be SECRET_KEY=dog. If the secret key were

dog=abc then the line would be SECRET_KEY=dog=abc. That’s it!

Here is what my file looks like with the secret key generated for the project. Swap in

your own secret key in place of it. Note that in the bookstore_project/settings.py file

the secret key will be surrounded by quotes '' to signify it as a string. Do not include

the quotes when copying the secret key over into docker-compose.yml!

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

environment:

- SECRET_KEY=p_o3vp1rg5)t^lxm9-43%0)s-=1qpeq%o7gfq+e4#*!t+_ev82

volumes:

- .:/code

ports:

- 8000:8000

depends_on:

- db

db:

image: postgres:11

volumes:

- postgres_data:/var/lib/postgresql/data/

Chapter 8: Environment Variables 170

volumes:

postgres_data:

Note that if your secret key includes a dollar sign, $, then you need to add an additional

dollar sign, $$. This is due to how docker-compose handles variable substitutiona.

Otherwise you will see an error!
ahttps://docs.docker.com/compose/compose-file/#variable-substitution

Step two, swap out the hard coded secret key value in bookstore_project/settings.py

for a link to the environment variable. If you look at the bookstore_project/settings.py

file the very first line import’s os158 from Python. Using os.environ159 allows us to

reference environment variables which are supplied via docker-compose.yml.

Here’s what your updated file should look like:

Code

bookstore_project/settings.py

SECRET_KEY = os.environ.get('SECRET_KEY')

It can be confusing when both an environment variable and the setting itself have the

same name so to solidify the structure here, we could have called this environment

variable NEW_SECRET_KEY in our docker-compose.yml file in which case the bookstore_-

project/settings.py line would have been SECRET_KEY = os.environ.get('NEW_-

SECRET_KEY'). However it is common to have the environment variable name match

that of the setting it replaces.

The final step is to stop and re-start our Docker containers since they are designed to

be stateless so when the state has changed–and environment variables are part of the
158https://docs.python.org/3.7/library/os.html
159https://docs.python.org/3.7/library/os.html#os.environ

https://docs.docker.com/compose/compose-file/#variable-substitution
https://docs.docker.com/compose/compose-file/#variable-substitution
https://docs.python.org/3.7/library/os.html
https://docs.python.org/3.7/library/os.html#os.environ
https://docs.python.org/3.7/library/os.html
https://docs.python.org/3.7/library/os.html#os.environ

Chapter 8: Environment Variables 171

state!–we need to quickly reload the containers to incorporate any new environment

variables that have been set.

Command Line

$ docker-compose down

$ docker-compose up -d

All set. You should be able to navigate to the webpage again, refresh it, and everything

still works as before. If the environment variable hadn’t loaded you’d see an error since

a SECRET_KEY is required for any Django project. If that’s the case run docker-compose

logs from the command line to diagnose the issue.

DEBUG

Next up is DEBUG160 which is a boolean setting. By default Django sets this to True to

help with debugging in local development, however, when it comes time to deploy a

website in production this should be set to False.

In Chapter 17: Security we will learn how to create a docker-compose-prod.yml file with

production-only configurations that sets this to False. Since we’re using variables our

bookstore_project/settings.py file can remain the same and we only need to change

the docker compose reference. But for now, since we’re still in local development

mode, let’s set DEBUG to True. We could also set this to 1 and FALSE to 0 which is a

choice you’ll see some developers make.

Update the docker-compose.yml file with a new environment variable for DEBUG.

160https://docs.djangoproject.com/en/2.2/ref/settings/#debug

https://docs.djangoproject.com/en/2.2/ref/settings/#debug
https://docs.djangoproject.com/en/2.2/ref/settings/#debug

Chapter 8: Environment Variables 172

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

environment:

- SECRET_KEY=p_o3vp1rg5)t^lxm9-43%0)s-=1qpeq%o7gfq+e4#*!t+_ev82

- DEBUG=1

volumes:

- .:/code

ports:

- 8000:8000

depends_on:

- db

db:

image: postgres:11

volumes:

- postgres_data:/var/lib/postgresql/data/

volumes:

postgres_data:

Then update the DEBUG configuration within bookstore_project/settings.py to ref-

erence the environment variable now. Note the addition of Python’s built-in int161

function and a default of 0.

161https://docs.python.org/3.7/library/functions.html#int

https://docs.python.org/3.7/library/functions.html#int
https://docs.python.org/3.7/library/functions.html#int

Chapter 8: Environment Variables 173

Code

bookstore_project/settings.py

DEBUG = int(os.environ.get('DEBUG', default=0))

Remember to stop and start the Docker containers to load in the environment

variables.

Command Line

$ docker-compose down

$ docker-compose up -d

Databases

It’s possible and recommended to have multiple levels of users and permissions in

your PostgreSQL database. But, given this is a book on Django, covering the topic

properly is well beyond our scope. However, using environment variables for such

secret information is a good idea as well.

Git

Make sure to commit the code changes with Git.

Chapter 8: Environment Variables 174

Command Line

$ git status

$ git add .

$ git commit -m 'ch8'

If any issues crop up, compare your files against the official source code on Github162.

Conclusion

Adding environment variables is a necessary step for any truly professional Django

project. While a bit scary at first they are conceptually quite straightforward. In

the next chapter we’ll fully configure our email settings and add password reset

functionality.
162https://github.com/wsvincent/djangoforprofessionals/tree/master/ch8-environment-variables

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch8-environment-variables
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch8-environment-variables

Chapter 9: Email
In this chapter we will fully configure email and add password change and password

reset functionality. Currently emails are not actually sent to users. They are simply

outputted to our command line console. We’ll change that by signing up for a third-

party email service, obtaining API keys, and updating our settings.py file. Django

takes care of the rest.

So far all of our work–custom usermodel, pages app, static assets, authenticationwith

django-allauth, and environment variables–could apply to almost any new project.

After this chapter we will start building out the Bookstore site itself as opposed to

foundational steps.

Custom Confirmation Emails

Let’s sign up for a new user account to review the current user registration flow. Then

we’ll customize it. Make sure you are logged out and then navigate to the SignUp page.

I’ve chosen to use testuser3@email.com and testpass123 as the password.

Chapter 9: Email 176

testuser3 Sign Up

Upon submission we are redirected to the homepage with a custom greeting and an

email is sent to us within the command line console. You can see this by checking the

logs with docker-compose logs.

To customize this email we first need to find the existing templates. Navigate over to

the django-allauth source code on Github163 and perform a search with a portion of

the generated text. That leads to the discovery that there are in fact two files used:

one for the subject line, email_confirmation_subject.txt, and one for the email body

called email_confirmation_message.txt.

To update bothwe’ll override themby recreating the same structure of django-allauth

which means making our own email directory within templates/account and then

adding our own versions of the files there.

163https://github.com/pennersr/django-allauth

https://github.com/pennersr/django-allauth
https://github.com/pennersr/django-allauth

Chapter 9: Email 177

Command Line

$ mkdir templates/account/email

$ touch templates/account/email/email_confirmation_subject.txt

$ touch templates/account/email/email_confirmation_message.txt

Let’s start with the subject line since it’s the shorter of the two. Here is the default

text from django-allauth.

email_confirmation_subject.txt

{% load i18n %}

{% autoescape off %}

{% blocktrans %}Please Confirm Your E-mail Address{% endblocktrans %}

{% endautoescape %}

The first line, {% load i18n %}, is to support Django’s internationalization164 function-

ality, the ability to support multiple languages. Then comes the Django template tag

for autoescape165. By default it is “on” and protects against security issues like cross

site scripting. But since we can trust the content of the text here, it is turned off.

Finally we come to our text itself which is wrapped in blocktrans166 template tags to

support translations. Let’s change the text to demonstrate that we can.

164https://docs.djangoproject.com/en/2.2/topics/i18n/
165https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#autoescape
166https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#std:templatetag-blocktrans

https://docs.djangoproject.com/en/2.2/topics/i18n/
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#autoescape
https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#std:templatetag-blocktrans
https://docs.djangoproject.com/en/2.2/topics/i18n/
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#autoescape
https://docs.djangoproject.com/en/2.2/topics/i18n/translation/#std:templatetag-blocktrans

Chapter 9: Email 178

email_confirmation_subject.txt

{% load i18n %}

{% autoescape off %}

{% blocktrans %}Confirm Your Sign Up{% endblocktrans %}

{% endautoescape %}

Now turn to the email confirmation message itself. Here is the current default167:

email_confirmation_message.txt

{% load account %}{% user_display user as user_display %}{% load i18n %}

{% autoescape off %}{% blocktrans with site_name=current_site.name\

site_domain=current_site.domain %}Hello from {{ site_name }}!

You're receiving this e-mail because user {{ user_display }} has given yours\

as an e-mail address to connect their account.

To confirm this is correct, go to {{ activate_url }}

{% endblocktrans %}{% endautoescape %}

{% blocktrans with site_name=current_site.name site_domain=current_site.\

domain %}Thank you from {{ site_name }}!

{{ site_domain }}{% endblocktrans %}

You probably noticed that the default email sent referred to our site as example.com

which is displayed here as {{ site_name }}. Where does that come from? The answer

is the sites section of the Django admin, which is used by django-allauth. So head

to the admin at http://127.0.0.1:8000/admin/168 and click on the Sites link on the

homepage.
167https://github.com/pennersr/django-allauth/blob/41f84f5530b75431cfd4cf2b89cd805ced009e7d/allauth/

templates/account/email/email_confirmation_message.txt
168http://127.0.0.1:8000/admin/

https://github.com/pennersr/django-allauth/blob/41f84f5530b75431cfd4cf2b89cd805ced009e7d/allauth/templates/account/email/email_confirmation_message.txt
http://127.0.0.1:8000/admin/
https://github.com/pennersr/django-allauth/blob/41f84f5530b75431cfd4cf2b89cd805ced009e7d/allauth/templates/account/email/email_confirmation_message.txt
https://github.com/pennersr/django-allauth/blob/41f84f5530b75431cfd4cf2b89cd805ced009e7d/allauth/templates/account/email/email_confirmation_message.txt
http://127.0.0.1:8000/admin/

Chapter 9: Email 179

Admin Sites

There is a “Domain Name” and a “Display Name” here. Click on example.com under

“Domain Name” so we can edit it.

Admin Change Site

The Domain Name169 is the full domain name for a site, for example it might be

djangobookstore.com, while the Display Name170 is a human-readable name for the
169https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.domain
170https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.name

https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.domain
https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.name
https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.domain
https://docs.djangoproject.com/en/2.2/ref/contrib/sites/#django.contrib.sites.models.Site.name

Chapter 9: Email 180

site such as Django Bookstore.

Make these updates and click the “Save” button in the lower right corner when done.

Admin Sites - DjangoBookstore.com

Ok, back to our email. Let’s customize it a bit by changing the greeting from “Hello”

to “Hi”. Note that backslashes \ are included for formatting but are not necessary in

the raw code. In other words, you can remove them from the code below–and other

code examples–as needed.

email_confirmation_message.txt

{% load account %}{% user_display user as user_display %}{% load i18n %}\

{% autoescape off %}{% blocktrans with site_name=current_site.name

site_domain=current_site.domain %}Hi from {{ site_name }}!

You're receiving this e-mail because user {{ user_display }} has given

yours as an e-mail address to connect their account.

To confirm this is correct, go to {{ activate_url }}

{% endblocktrans %}{% endautoescape %}

{% blocktrans with site_name=current_site.name site_domain=current_site\

Chapter 9: Email 181

.domain %}Thank you from {{ site_name }}!

{{ site_domain }}{% endblocktrans %}

One final item to change. Did you notice the email was from webmaster@localhost?

That’s a default setting we can also update via DEFAULT_FROM_EMAIL171. Let’s do

that nowby adding the following line at the bottomof the bookstore_project/settings.py

file.

Code

bookstore_project/settings.py

DEFAULT_FROM_EMAIL = 'admin@djangobookstore.com'

Make sure you are logged out of the site and go to the Sign Up page again to create

a new user. I’ve used testuser4@email.com for convenience. After being redirected to

the homepage check the command line to see the message by typing docker-compose

logs.

Command Line

...

web_1 | Content-Transfer-Encoding: 7bit

web_1 | Subject: [Django Bookstore] Confirm Your Sign Up

web_1 | From: admin@djangobookstore.com

web_1 | To: testuser4@email.com

web_1 | Date: Sat, 13 Jul 2019 18:34:50 -0000

web_1 | Message-ID: <156312929025.27.2332096239397833769@87d045aff8f7>

web_1 |

web_1 | Hi from Django Bookstore!

web_1 |

web_1 | You're receiving this e-mail because user testuser4 has given yours\
171https://docs.djangoproject.com/en/2.2/ref/settings/#default-from-email

https://docs.djangoproject.com/en/2.2/ref/settings/#default-from-email
https://docs.djangoproject.com/en/2.2/ref/settings/#default-from-email

Chapter 9: Email 182

as an e-mail address to connect their account.

web_1 |

web_1 | To confirm this is correct, go to http://127.0.0.1:8000/accounts/\

confirm-email/NA:1hmjKk:6MiDB5XoLW3HAhePuZ5WucR0Fiw/

web_1 |

web_1 | Thank you from Django Bookstore!

web_1 | djangobookstore.com

And there it is with the new From setting, the new message, and the new domain

djangobookstore.com that sent the email.

Email Confirmation Page

Click on the unique URL link in the email which redirects to the email confirm page.

Confirm Email Page

Not very attractive. Let’s update it to match the look of the rest of our site. Searching

again in the django-allauth source code on Github172 reveals the name and location of

this file is templates/account/email_confirm.html. So let’s create our own template.
172https://github.com/pennersr/django-allauth

https://github.com/pennersr/django-allauth
https://github.com/pennersr/django-allauth

Chapter 9: Email 183

Command Line

$ touch templates/account/email_confirm.html

And then update it to extend _base.html and use Bootstrap for the button.

Code

<!-- templates/account/email_confirm.html -->

{% extends '_base.html' %}

{% load i18n %}

{% load account %}

{% block head_title %}{% trans "Confirm E-mail Address" %}{% endblock %}

{% block content %}

<h1>{% trans "Confirm E-mail Address" %}</h1>

{% if confirmation %}

{% user_display confirmation.email_address.user as user_display %}

<p>{% blocktrans with confirmation.email_address.email as email %}Please confirm

that {{ email }} is an e-mail address for user

{{ user_display }}.{% endblocktrans %}</p>

<form method="post" action="{% url 'account_confirm_email' confirmation.key %}">

{% csrf_token %}

<button class="btn btn-primary" type="submit">{% trans 'Confirm' %}</button>

Chapter 9: Email 184

</form>

{% else %}

{% url 'account_email' as email_url %}

<p>{% blocktrans %}This e-mail confirmation link expired or is invalid. Please

issue a new e-mail confirmation request.

{% endblocktrans %}</p>

{% endif %}

{% endblock %}

Refresh the page to see our update.

Confirm Email Page Updated

Chapter 9: Email 185

Password Reset and Password Change

Django and django-allauth also come with support for additional user account

features such as the ability to reset a forgotten password and change your existing

password if already logged in.

The locations of the default password reset and password change pages are as follows:

• http://127.0.0.1:8000/accounts/password/reset/173

• http://127.0.0.1:8000/accounts/password/change/174

If you go through the flow of each you can find the corresponding templates and email

messages in the django-allauth source code.

Email Service

The emails we have configured so far are generally referred to as “Transactional

Emails” as they occur based on a user action of some kind. This is in contrast to

“Marketing Emails” such as, say, a monthly newsletter.

There are many transactional email providers available including SendGrid, MailGun,

Amazon’s Simple Email Service. Django is agnostic about which provider is used; the

steps are similar for all and many have a free tier available.

After signing up for an account with your email service of choice you’ll often have a

choice between using SMTP175 or a Web API. SMTP is easier to configure, but a web

API is more configurable and robust. Start with SMTP and work your way from there:

email configurations can be quite complex in their own right.
173http://127.0.0.1:8000/accounts/password/reset/
174http://127.0.0.1:8000/accounts/password/change/
175https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

http://127.0.0.1:8000/accounts/password/reset/
http://127.0.0.1:8000/accounts/password/change/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://127.0.0.1:8000/accounts/password/reset/
http://127.0.0.1:8000/accounts/password/change/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol

Chapter 9: Email 186

After obtaining a username and password with an email provider, a few settings

tweaks will allow Django to use them to send emails.

The first step would be to update the EMAIL_BACKEND config which should be near the

bottom of the bookstore_project/settings.py file since we previously updated it.

Code

bookstore_project/settings.py

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' # new

And then to configure EMAIL_HOST, EMAIL_HOST_USER, EMAIL_HOST_PASSWORD, EMAIL_PORT,

and EMAIL_USE_TLS based on the instructions from your email provider as environment

variables.

In the official source code the EMAIL_BACKEND will remain console, but the previous

steps are how to add an email service. If you find yourself frustrated properly

configuring email, well, you’re not alone! Django does at least make it far, far easier

than implementing without the benefits of a batteries-included framework.

Implementing email in Django with

Git

To commit this chapter’s code updates make sure to check the status of changes, add

them all, and include a commit message.

Chapter 9: Email 187

Command Line

$ git status

$ git add .

$ git commit -m 'ch9'

If you have any issues compare your code against the official source code onGithub176.

Conclusion

Configuring email properly is largely a one-time pain. But it is a necessary part of

any production website. This concludes the foundational chapters for our Bookstore

project. In the next chapter we’ll finally start building out the Bookstore itself.
176https://github.com/wsvincent/djangoforprofessionals/tree/master/ch9-email

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch9-email
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch9-email

Chapter 10: Books App
In this chapter we will build a Books app for our project that displays all available

books and has an individual page for each.We’ll also explore different URL approaches

starting with using an id, then switching to a slug, and finally using a UUID.

To start we must create this new app which we’ll call books.

Command Line

$ docker-compose exec web python manage.py startapp books

And to ensure Django knows about our new app, open your text editor and add the

new app to INSTALLED_APPS in our settings.py file:

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites',

Third-party

'allauth',

'allauth.account',

Chapter 10: Books App 189

'crispy_forms',

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

'books.apps.BooksConfig', # new

]

Ok, initial creation complete!

Models

Ultimately we’ll need a model, view, url, and template for each page so it’s common

to debate where start. The model is a good place to start as it sets the structure. Let’s

think about what fields we might want to include. To keep things simple we’ll start

with a title, author, and price.

Update the books/models.py file to include our new Booksmodel.

Code

books/models.py

from django.db import models

class Book(models.Model):

title = models.CharField(max_length=200)

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

Chapter 10: Books App 190

def __str__(self):

return self.title

At the top we’re importing the Django class models and then creating a Book model

that subclasses it which means we automatically have access to everything within

django.db.models.Models177 and can add additional fields and methods as desired.

For title and author we’re limiting the length to 200 characters and for price using

a DecimalField178 which is a good choice when dealing with currency.

Below we’ve specified a __str__method to control how the object is outputted in the

Admin and Django shell.

Now that our newdatabasemodel is createdweneed to create a newmigration record

for it.

Command Line

$ docker-compose exec web python manage.py makemigrations books

Migrations for 'books':

books/migrations/0001_initial.py

- Create model Book

And then apply the migration to our database.

Command Line

$ docker-compose exec web python manage.py migrate books

Adding the name of the app books to each command is optional but a good habit as it

keeps both the migrations file and the migrate command focused on just that app. If

we’d left the app name off then all changes would be included in the migrations file

and database migrate which can be harder to debug later on.
177https://docs.djangoproject.com/en/2.2/topics/db/models/
178https://docs.djangoproject.com/en/2.2/ref/models/fields/#decimalfield

https://docs.djangoproject.com/en/2.2/topics/db/models/
https://docs.djangoproject.com/en/2.2/ref/models/fields/#decimalfield
https://docs.djangoproject.com/en/2.2/topics/db/models/
https://docs.djangoproject.com/en/2.2/ref/models/fields/#decimalfield

Chapter 10: Books App 191

Our database is configured. Let’s add some data to the admin.

Admin

We need a way to access our data for which the Django admin is perfectly suited.

Don’t forget to update the books/admin.py file or else the app won’t appear! I forget

this step almost every time even after using Django for years.

Code

books/admin.py

from django.contrib import admin

from .models import Book

admin.site.register(Book)

If you look into the admin at http://127.0.0.1:8000/admin/179 the Books app is now

there.
179http://127.0.0.1:8000/admin/

http://127.0.0.1:8000/admin/
http://127.0.0.1:8000/admin/

Chapter 10: Books App 192

Admin Homepage

Let’s add a book entry for Django for Professionals. Click on the + Add button next

to Books to create a new entry. The title is “Django for Professionals”, the author is

“William S. Vincent”, and the price is $39.00. There’s no need to include the dollar

sign $ in the amount as we’ll add that in our eventual template.

Chapter 10: Books App 193

Admin - Django for Professionals book

After clicking on the “Save” button we’re redirected to the main Books page which

only shows the title.

Admin Books Page

Let’s update the books/admin.py file to specify which fields we also want displayed.

Chapter 10: Books App 194

Code

books/admin.py

from django.contrib import admin

from .models import Book

class BookAdmin(admin.ModelAdmin):

list_display = ("title", "author", "price",)

admin.site.register(Book, BookAdmin)

Then refresh the page.

Admin Books List Page

Now that our database model is complete we need to create the necessary views,

URLs, and templates so we can display the information on our web application.Where

to start is always a question and a confusing one at that for developers.

Personally I often start with the URLs, then the Views, and the Templates.

Chapter 10: Books App 195

URLs

We need to update two urls.py files. The first is bookstore_project/urls.py to notify

it of the proper path for our new books app.

Code

bookstore_project/urls.py

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('allauth.urls')),

Local apps

path('', include('pages.urls')),

path('books/', include('books.urls')), # new

]

Now create our books app URLs paths. We must create this file first.

Command Line

$ touch books/urls.py

We’ll use empty string '' so combined with the fact that all books app URLs will start

at books/ that will also be the route for our main list view of each book. The view it

references, BookListView, has yet to be created.

Chapter 10: Books App 196

Code

books/urls.py

from django.urls import path

from .views import BookListView

urlpatterns = [

path('', BookListView.as_view(), name='book_list'),

]

Views

Moving on time for that BookListView we just referenced in our URLs file. This will

rely on the built-in ListView180, a Generic Class-Based View provided for common

use cases like this. All we must do is specify the proper model and template to be

used.

180https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#django.views.generic.list.

ListView

https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#django.views.generic.list.ListView
https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#django.views.generic.list.ListView

Chapter 10: Books App 197

Code

books/views.py

from django.views.generic import ListView

from .models import Book

class BookListView(ListView):

model = Book

template_name = 'books/book_list.html'

Note the template book_list.html does not exist yet.

Templates

It is optional to create an app specific folderwithin templates but it can help especially

as number grows in size so we’ll create one called books.

Command Line

$ mkdir templates/books/

$ touch templates/books/book_list.html

Chapter 10: Books App 198

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

{% for book in object_list %}

<div>

<h2>{{ book.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

At the top we note that this template extends _base.html and then wraps our desired

code with content blocks. We use the Django Templating Language to set up a simple

for loop for each book. Note that object_list comes from ListView and contains all

the objects in our view.

The final step is to spin up and then down our containers to reload the Django

settings.py file. Otherwise it won’t realize we’ve made a change and so there will

be an error page and in the logs a message about “ModuleNotFoundError: No module

named ‘books.urls’”.

Spin down and then up again our containers.

Chapter 10: Books App 199

Command Line

$ docker-compose down

$ docker-compose up -d

If you go to http://127.0.0.1:8000/books/181 now the books page will work.

Books Page

object_list

ListView relies on object_list, as we just saw, but this is far from descriptive. A better

approach is to rename it to a friendlier182 name using context_object_name.

Update books/views.py as follows.

181http://127.0.0.1:8000/books/
182https://docs.djangoproject.com/en/2.2/topics/class-based-views/generic-display/#making-friendly-

template-contexts

http://127.0.0.1:8000/books/
https://docs.djangoproject.com/en/2.2/topics/class-based-views/generic-display/#making-friendly-template-contexts
http://127.0.0.1:8000/books/
https://docs.djangoproject.com/en/2.2/topics/class-based-views/generic-display/#making-friendly-template-contexts
https://docs.djangoproject.com/en/2.2/topics/class-based-views/generic-display/#making-friendly-template-contexts

Chapter 10: Books App 200

Code

books/views.py

from django.views.generic import ListView, DetailView

from .models import Book

class BookListView(ListView):

model = Book

context_object_name = 'book_list' # new

template_name = 'books/book_list.html'

And then swap out object_list in our template for book_list.

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

{% for book in book_list %}

<div>

<h2>{{ object.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

Refresh the page and it will still work as before! This technique is especially helpful

Chapter 10: Books App 201

on larger projects where multiple developers are working on a project. It’s hard for a

front-end engineer to guess correctly what object_listmeans!

To prove the list view works for multiple items add two more books to the site via the

admin. I’ve added my two other Django books–Django for Beginners and Django for

APIs–which both have “William S. Vincent” as the author and “39.00” as the price.

Three Books

Individual Book Page

Nowwe can add individual pages for each book by using another Generic Class-Based

View called DetailView183.

Our process is similar to the Books page and startswith theURL importing BookDetailView

on the second line and then setting the path to be the primary key of each book which

will be represented as an integer <int:pk>.

183https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#detailview

https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#detailview
https://docs.djangoproject.com/en/2.2/ref/class-based-views/generic-display/#detailview

Chapter 10: Books App 202

Code

books/urls.py

from django.urls import path

from .views import BookListView, BookDetailView # new

urlpatterns = [

path('', BookListView.as_view(), name='book_list'),

path('<int:pk>', BookDetailView.as_view(), name='book_detail'), # new

]

Django automatically adds an auto-incrementing primary key184 to our database

models. Sowhile we only declared the fields title, author, and body on our Bookmodel,

under-the-hood Django also added another field called id, which is our primary key.

We can access it as either id or pk.

The pk for our first book is 1. For the second one it will 2. And so on. Therefore when

we go to the individual entry page for our first book, we can expect that its URL route

will be books/1.

Now on to the books/views.py file where we’ll import DetailView and create a

BookDetailView class that also specifies model and template_name fields.

184https://docs.djangoproject.com/en/2.2/topics/db/models/#automatic-primary-key-fields

https://docs.djangoproject.com/en/2.2/topics/db/models/#automatic-primary-key-fields
https://docs.djangoproject.com/en/2.2/topics/db/models/#automatic-primary-key-fields

Chapter 10: Books App 203

Code

books/views.py

from django.views.generic import ListView, DetailView # new

from .models import Book

class BookListView(ListView):

model = Book

context_object_name = 'book_list'

template_name = 'books/book_list.html'

class BookDetailView(DetailView): # new

model = Book

template_name = 'books/book_detail.html'

And finally the template which we must first create.

Command Line

$ touch templates/books/book_detail.html

Then have it display all the current fields. We can also showcase the title in the title

tags so that it appears in the web browser tab.

Chapter 10: Books App 204

Code

<!-- templates/books/book_detail.html -->

{% extends '_base.html' %}

{% block title %}{{ object.title }}{% endblock title %}

{% block content %}

<div class="book-detail">

<h2>{{ object.title }}</h2>

<p>Author: {{ object.author }}</p>

<p>Price: {{ object.price }}</p>

</div>

{% endblock content %}

If you navigate now to http://127.0.0.1:8000/books/1/185 you’ll see a dedicated page

for our first book.

Book Detail Page

185http://127.0.0.1:8000/books/1/

http://127.0.0.1:8000/books/1/
http://127.0.0.1:8000/books/1/

Chapter 10: Books App 205

context_object_name

Just as ListView defaults to object_listwhich we updated to be more specific, so too

DetailView defaults to object which we can make more descriptive using context_-

object_name. We’ll set it to book.

Code

books/views.py

...

class BookDetailView(DetailView):

model = Book

context_object_name = 'book' # new

template_name = 'books/book_detail.html'

Don’t forget to update our template too with this change, swapping out object for

book for our three fields.

Code

<!-- templates/books/book_detail.html -->

{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}

<div class="book-detail">

<h2>{{ book.title }}</h2>

<p>Author: {{ book.author }}</p>

<p>Price: {{ book.price }}</p>

</div>

{% endblock content %}

Chapter 10: Books App 206

As a final step update the URL link on the book list page to point to individual page.

With the url template tag186 we can point to book_detail – the URL name set in

books/urls.py – and then pass in the pk.

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

{% for book in book_list %}

<div>

<h2>{{ book.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

Refresh the book list page at http://127.0.0.1:8000/books/187 and links are now all

clickable and direct to the correct individual book page.

get_absolute_url

One additional step we haven’t made yet, but should is to add a get_absolute_url()188

method which sets a canonical URL for the model. It is also required when using the
186https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
187http://127.0.0.1:8000/books/
188https://docs.djangoproject.com/en/2.2/ref/models/instances/#get-absolute-url

https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
http://127.0.0.1:8000/books/
https://docs.djangoproject.com/en/2.2/ref/models/instances/#get-absolute-url
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#url
http://127.0.0.1:8000/books/
https://docs.djangoproject.com/en/2.2/ref/models/instances/#get-absolute-url

Chapter 10: Books App 207

reverse()189 function which is commonly used.

Here’s how to add it to our books/models.py file. Import reverse at the top. Then add

the get_absolute_urlmethodwhichwill be the reverse of our URL name, book_detail,

and passes in the id as a string.

Code

books/models.py

from django.db import models

from django.urls import reverse # new

class Book(models.Model):

title = models.CharField(max_length=200)

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):

return self.title

def get_absolute_url(self): # new

return reverse('book_detail', args=[str(self.id)])

Then we can update the templates. Currently our a href link is using {% url 'book_-

detail' book.pk %}. However we can instead use get_absolute_url directly which

already has the pk passed in.

189https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#django.urls.reverse

https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#django.urls.reverse
https://docs.djangoproject.com/en/2.2/ref/urlresolvers/#django.urls.reverse

Chapter 10: Books App 208

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

{% for book in book_list %}

<div>

<h2>{{ book.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

There’s no need to use the url template tag either, just one canonical reference that

can be changed, if needed, in the books/models.py file and will propagate throughout

the project from there. This is a cleaner approach and should be used whenever you

need individual pages for an object.

Primary Keys vs. IDs

It can be confusing whether to use a primary key (PK) or an ID in a project, especially

since Django’s DetailView treats them interchangeably. However there is a subtle

difference.

The id is a model field automatically set by Django internally to auto-increment. So

the first book has an id of 1, the second entry of 2, and so on. This is also, by default,

treated as the primary key pk of a model.

Chapter 10: Books App 209

However it’s possible to manually change what the primary key is for a model. It

doesn’t have to be id, but could be something like object_id depending on the use

case. Additionally Python has a built-in id()190 object which can sometimes cause

confusion and/or bugs.

By contrast the primary key pk refers to the primary key field of a model so you’re

safer using pk when in doubt. And in fact in the next section we will update the id of

our model!

Slugs vs. UUIDs

Using the pk field in the URL of our DetailView is quick and easy, but not ideal for a

real-world project. The pk is currently the same as our auto-incrementing id. Among

other concerns, it tells a potential hacker exactly how many records you have in your

database; it tells them exactly what the id is which can be used in a potential attack;

and there can be synchronization issues if you have multiple front-ends.

There are two alternative approaches. The first is called a “slug,” a newspaper term

for a short label for something that is often used in URLs. For example, in our example

of “Django for Professionals” its slug could be django-for-professionals. There’s even

a SlugField191 model field that can be used and either added when creating the title

field by hand or auto-populated upon save. The main challenge with slugs is handling

duplicates, though this can be solved by adding random strings or numbers to a given

slug field. The synchronization issue remains though.

A better approach is to use a UUID (Universally Unique IDentifier)192 which Django

now supports via a dedicated UUIDField193.
190https://docs.python.org/3.7/library/functions.html#id
191https://docs.djangoproject.com/en/2.2/ref/models/fields/#slugfield
192https://docs.python.org/3/library/uuid.html?highlight=uuid#module-uuid
193https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.UUIDField

https://docs.python.org/3.7/library/functions.html#id
https://docs.djangoproject.com/en/2.2/ref/models/fields/#slugfield
https://docs.python.org/3/library/uuid.html?highlight=uuid#module-uuid
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.UUIDField
https://docs.python.org/3.7/library/functions.html#id
https://docs.djangoproject.com/en/2.2/ref/models/fields/#slugfield
https://docs.python.org/3/library/uuid.html?highlight=uuid#module-uuid
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.UUIDField

Chapter 10: Books App 210

Let’s implement a UUID now by adding a new field to our model and then updating

the URL path.

Import uuid at the top and then update the id field to actually be a UUIDField that

is now the primary key. We also use uuid4 for the encryption. This allows us to use

DetailView which requires either a slug or pk field; it won’t work with a UUID field

without significant modification.

Code

books/models.py

import uuid # new

from django.db import models

from django.urls import reverse

class Book(models.Model):

id = models.UUIDField(# new

primary_key=True,

default=uuid.uuid4,

editable=False)

title = models.CharField(max_length=200)

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):

return self.title

def get_absolute_url(self):

return reverse('book_detail', args=[str(self.id)])

Chapter 10: Books App 211

In the URL path swap out int for uuid in the detail view.

Code

books/urls.py

from django.urls import path

from .views import BookListView, BookDetailView

urlpatterns = [

path('', BookListView.as_view(), name='book_list'),

path('<uuid:pk>', BookDetailView.as_view(), name='book_detail'), # new

]

But now we are faced with a problem: there are existing book entries, three in fact,

with their own ids as well as related migration files that use them. Creating a new

migration like this causes real problems194. The simplest approach, which we will use,

is the most destructive: to simply delete old booksmigrations and start over.

Command Line

$ docker-compose exec web rm -r books/migrations

$ docker-compose down

One last issue is that we are also persisting our PostgreSQL database via a volume

mount that still has records to the older id fields. You can see this with the docker

volume ls command.

194https://docs.djangoproject.com/en/2.2/howto/writing-migrations/#migrations-that-add-unique-fields

https://docs.djangoproject.com/en/2.2/howto/writing-migrations/#migrations-that-add-unique-fields
https://docs.djangoproject.com/en/2.2/howto/writing-migrations/#migrations-that-add-unique-fields

Chapter 10: Books App 212

Command Line

$ docker volume ls

DRIVER VOLUME NAME

local books_postgres_data

The simplest approach is again to simply delete the volume and start overwithDocker.

As we’re early enough in the project we’ll take this route; a moremature project would

require considering a more complex approach.

The steps involve starting up our web and db containers; adding a new initial migration

file for the books app, applying all updates with migrate, and then creating a superuser

account again.

Command Line

$ docker volume rm books_postgres_data

$ docker-compose up -d

$ docker-compose exec web python manage.py makemigrations books

$ docker-compose exec web python manage.py migrate

$ docker-compose exec web python manage.py createsuperuser

Now go into admin and add the three books again. If you then navigate to the main

books page and click on an individual book you’ll be taken to a new detail page with a

UUID in the URL.

Chapter 10: Books App 213

Django for Professionals book UUID

Navbar

Let’s add a link to the books page in our navbar. We can use the url template tag and

the URL name of the page which is book_list.

Code

<!-- templates/_base.html -->

<nav class="my-2 my-md-0 mr-md-3">

Books

About

Updated NavBar

Chapter 10: Books App 214

Tests

We need to test our model and views now. We want to ensure that the Books model

works as expected, including its str representation. Andwewant to test both ListView

and DetailView.

Here’s what sample tests look like in the books/tests.py file.

Code

books/tests.py

from django.test import Client, TestCase

from django.urls import reverse

from .models import Book

class BookTests(TestCase):

def setUp(self):

self.book = Book.objects.create(

title='Harry Potter',

author='JK Rowling',

price='25.00',

)

def test_book_listing(self):

self.assertEqual(f'{self.book.title}', 'Harry Potter')

self.assertEqual(f'{self.book.author}', 'JK Rowling')

self.assertEqual(f'{self.book.price}', '25.00')

Chapter 10: Books App 215

def test_book_list_view(self):

response = self.client.get(reverse('book_list'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'Harry Potter')

self.assertTemplateUsed(response, 'books/book_list.html')

def test_book_detail_view(self):

response = self.client.get(self.book.get_absolute_url())

no_response = self.client.get('/books/12345/')

self.assertEqual(response.status_code, 200)

self.assertEqual(no_response.status_code, 404)

self.assertContains(response, 'Harry Potter')

self.assertTemplateUsed(response, 'books/book_detail.html')

We import TestCase which we’ve seen before and also Client()195 which is new and

used as a dummy Web browser for simulating GET and POST requests on a URL. In

other words, whenever you’re testing views you should use Client().

In our setUpmethodwe add a sample book to test. test_book_listing checks that both

its string representation and content are correct. Thenwe use test_book_list_view to

confirm that our homepage returns a 200 HTTP status code, contains our body text,

and uses the correct books/book_list.html template. Finally, test_book_detail_view

tests that our detail page works as expected and that an incorrect page returns a 404.

It’s always good both to test that something does exist and that something incorrect

doesn’t exist in your tests.

Go ahead and run these tests now. They should all pass.

195https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.Client

https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.Client
https://docs.djangoproject.com/en/2.2/topics/testing/tools/#django.test.Client

Chapter 10: Books App 216

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.................

--

Ran 17 tests in 0.369s

OK

Destroying test database for alias 'default'...

Git

We’ve done a lot of work in this chapter so add it all to version control now with Git

by adding new files and adding a commit message.

Command Line

$ git status

$ git add .

$ git commit -m 'ch10'

The official source code for this chapter is available on Github196 for reference.

Conclusion

We’re at the end of quite a long chapter, but the architecture of our Bookstore project

is now much clearer. We’ve added a books model, learned how to change the URL

structure, and switched to the much more secure UUID pattern.
196https://github.com/wsvincent/djangoforprofessionals/tree/master/ch10-books

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch10-books
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch10-books

Chapter 10: Books App 217

In the next chapterwe’ll learn about foreign key relationships and add a reviews option

to our project.

Chapter 11: Reviews App
In this chapter we’ll add a reviews app so that readers can leave reviews of their

favorite books. It gives us a chance to discuss foreign keys, app structure, and dive

into forms.

Foreign Keys

We’ve already used a foreign key with our user model, but didn’t have to think about

it. Now we do! Fundamentally a database table can be thought of as similar to a

spreadsheet with rows and columns. There needs to be a primary key field that is

unique and refers to each record. In the last chapter we changed that from id to a

UUID, but one still exists!

This matters when we want to link two tables together. For example, our Booksmodel

will link to a Reviewsmodel since each review has to be connected to a relevant book.

This implies a foreign key relationship.

There are three possible types of foreign key relationships:

• One-to-one197

• One-to-many198

• Many-to-many199

197https://docs.djangoproject.com/en/2.2/ref/models/fields/#onetoonefield
198https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey
199https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield

https://docs.djangoproject.com/en/2.2/ref/models/fields/#onetoonefield
https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey
https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield
https://docs.djangoproject.com/en/2.2/ref/models/fields/#onetoonefield
https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey
https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield

Chapter 11: Reviews App 219

A one-to-one relationship is the simplest kind. An example would be a table of people’s

names and a table of social security numbers. Each person has only one social security

number and each social security number is linked to only one person.

In practice one-to-one relationships are rare. It’s unusual for both sides of a relation-

ship to only be matched to one counterpart. Some other examples though would be

country-flag or person-passport.

A one-to-many relationship is far more common and is the default foreign key200

setting within Django. For example, one student can sign up for many classes. Or

an employee has one job title, maybe “Software Engineer,” but there can be many

software engineers within a given company.

It’s also possible to have a ManyToManyField201 relationship. Let’s consider a list of

books and a list of authors: each book could have more than one author and each

author can write more than one book. That’s a many-to-many relationship. Just as

with the previous two examples you need a linked Foreign Key field to connect the two

lists. Additional examples include doctors and patients (every doctor sees multiple

patients and vice versa) or employees and tasks (each employee has multiple tasks

while each task is worked on by multiple employees).

Database design is a fascinating, deep topic that is both an art and a science. As the

number of tables grow in a project over time it is almost inevitable that a refactoring

will need to occur to address issues around inefficiency, bloat, and outright errors.

Normalization202 is the process of structuring a relational database though far beyond

the scope of this book.
200[ForeignKey](https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey)
201https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield
202https://en.wikipedia.org/wiki/Database_normalization

[ForeignKey](https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey)
https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield
https://en.wikipedia.org/wiki/Database_normalization
[ForeignKey](https://docs.djangoproject.com/en/2.2/ref/models/fields/#foreignkey)
https://docs.djangoproject.com/en/2.2/ref/models/fields/#manytomanyfield
https://en.wikipedia.org/wiki/Database_normalization

Chapter 11: Reviews App 220

Reviews model

Coming back to our basic reviews app, the first consideration is what type of foreign

key relationship will there be. If we are going to link a user to a review, then it is

a straightforward one-to-many relationship. However it could also be possible to

link books to reviews which would be many-to-many. The “correct” choice quickly

becomes somewhat subjective and certainly dependent upon the particular needs of

the project.

In this project we’ll treat the reviews app as a one-to-many between authors and

reviews as it’s the simpler approach.

Here again we face a choice around how to design our project. Do we add the Reviews

model within our existing books/models.py file or create a dedicated reviews app that

we then link to? Let’s start by adding a Reviewsmodel to the books app.

Code

books/models.py

import uuid

from django.contrib.auth import get_user_model # new

from django.db import models

from django.urls import reverse

class Book(models.Model):

id = models.UUIDField(

primary_key=True,

default=uuid.uuid4,

editable=False)

title = models.CharField(max_length=200)

Chapter 11: Reviews App 221

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

def __str__(self):

return self.title

def get_absolute_url(self):

return reverse('book_detail', kwargs={'pk': str(self.pk)})

class Review(models.Model): # new

book = models.ForeignKey(

Book,

on_delete=models.CASCADE,

related_name='reviews',

)

review = models.CharField(max_length=255)

author = models.ForeignKey(

get_user_model(),

on_delete=models.CASCADE,

)

def __str__(self):

return self.review

At the top under imports include get_user_model which is needed to refer to our

CustomUsermodel, then create a dedicated Reviewmodel. The book field is the one-to-

many foreign key that links Book to Review and we’re following the standard practice

of naming it the same as the linked model. All many-to-one relationships now require

Chapter 11: Reviews App 222

we specify an on_delete203 option, too. The review field contains the actual content

which perhaps could be a TextField204 depending on how much space you want to

provide for review length! For now, we’ll force reviews to be short at 255 characters

or less. And then we’ll also link to the author field to auto-populate the current user

with the review.

For all many-to-one relationships such as a ForeignKey we must also specify an on_-

delete205 option. And we’re using get_user_model206 to reference our custom user

model.

Create a new migrations file for our changes and then run migrate to apply them.

Command Line

$ docker-compose exec web python manage.py makemigrations books

Migrations for 'books':

books/migrations/0002_review.py

- Create model Review

$ docker-compose exec web python manage.py migrate

Admin

For the reviews app to appear in the admin we need to update books/admin.py

substantially by adding the Reviewmodel and specifying a display of TabularInline207.

203https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
204https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.TextField
205https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
206https://wsvincent.com/django-referencing-the-user-model/
207https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.TabularInline

https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.TextField
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://wsvincent.com/django-referencing-the-user-model/
https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.TabularInline
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.TextField
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ForeignKey.on_delete
https://wsvincent.com/django-referencing-the-user-model/
https://docs.djangoproject.com/en/2.2/ref/contrib/admin/#django.contrib.admin.TabularInline

Chapter 11: Reviews App 223

Code

books/admin.py

from django.contrib import admin

from .models import Book, Review

class ReviewInline(admin.TabularInline):

model = Review

class BookAdmin(admin.ModelAdmin):

inlines = [

ReviewInline,

]

list_display = ("title", "author", "price",)

admin.site.register(Book, BookAdmin)

Now navigate to the books section at http://127.0.0.1:8000/admin/books/book/208

and then click on any of the books to see the reviews visible on the individual book

page.
208http://127.0.0.1:8000/admin/books/book/

http://127.0.0.1:8000/admin/books/book/
http://127.0.0.1:8000/admin/books/book/

Chapter 11: Reviews App 224

Django for Professionals Admin Reviews

We’re limited to reviews by existing users at this point, although we have previously

created a testuser@email.com thatwas deletedwhenwe removed the database volume

mount in the previous chapter. There are two options for adding this account: we

could go to the main site and use the “Sign Up” link or we can add it directly from the

admin. Let’s do the latter. From the Users section on the Admin homepage click on

the “+ Add” button. Add a new user called testuser.

Chapter 11: Reviews App 225

Admin testuser

Then on the next page add testuser@email.com as the email address. Scroll down to

the bottom of the page and click the “Save” button.

Chapter 11: Reviews App 226

Admin testuser

Ok, finally, we can add reviews to the “Django for Professionals” book using testuser.

Navigate back to the Books section and click on the correct book. Write two reviews

and as AUTHORmake sure to select testuser.

Chapter 11: Reviews App 227

Add Two Reviews

Templates

With the reviews model set it’s time to update our templates to display reviews on

the individual page for each book. Add a basic “Reviews” section and then loop over

all existing reviews. Since this is a foreign key relationship we follow it by using

book.reviews.all. Then display the review field with review.review and the author

with review.author.

Chapter 11: Reviews App 228

Code

templates/books/book_detail.html

{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}

<div class="book-detail">

<h2>{{ book.title }}</h2>

<p>Author: {{ book.author }}</p>

<p>Price: {{ book.price }}</p>

<div>

<h3>Reviews</h3>

{% for review in book.reviews.all %}

{{ review.review }} ({{ review.author }})

{% endfor %}

</div>

</div>

{% endblock content %}

That’s it! Navigate over to the “Django for Professionals” individual page to see the

result. Your url will be different than the one here because we’re using a UUID.

Chapter 11: Reviews App 229

Reviews on Detail Page

Tests

Time for tests. We need to create a new user for our review and add a review to the

setUp method in our test suite. Then we can test that the book object contains the

correct review.

This involves importing get_user_model as well as adding the Reviewmodel at the top.

We can use create_user tomake a new user called reviewuser and then a review object

that is linked to our single book object. Finally under test_book_detail_view we can

add an additional assertContains test to the response object.

Chapter 11: Reviews App 230

Code

books/tests.py

from django.contrib.auth import get_user_model # new

from django.test import Client, TestCase

from django.urls import reverse

from .models import Book, Review # new

class BookTests(TestCase):

def setUp(self):

self.user = get_user_model().objects.create_user(# new

username='reviewuser',

email='reviewuser@email.com',

password='testpass123'

)

self.book = Book.objects.create(

title='Harry Potter',

author='JK Rowling',

price='25.00',

)

self.review = Review.objects.create(# new

book = self.book,

author = self.user,

review = 'An excellent review',

)

Chapter 11: Reviews App 231

def test_book_listing(self):

self.assertEqual(f'{self.book.title}', 'Harry Potter')

self.assertEqual(f'{self.book.author}', 'JK Rowling')

self.assertEqual(f'{self.book.price}', '25.00')

def test_book_list_view(self):

response = self.client.get(reverse('book_list'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'Harry Potter')

self.assertTemplateUsed(response, 'books/book_list.html')

def test_book_detail_view(self):

response = self.client.get(self.book.get_absolute_url())

no_response = self.client.get('/books/12345/')

self.assertEqual(response.status_code, 200)

self.assertEqual(no_response.status_code, 404)

self.assertContains(response, 'Harry Potter')

self.assertContains(response, 'An excellent review') # new

self.assertTemplateUsed(response, 'books/book_detail.html')

If you run the tests now they all should pass.

Chapter 11: Reviews App 232

Command Line

$ docker-compose exec web python manage.py test

Creating test database for alias 'default'...

System check identified no issues (0 silenced).

.................

--

Ran 17 tests in 0.675s

OK

Destroying test database for alias 'default'...

Git

Add our new code changes to Git and include a commit message for the chapter.

Command Line

$ git status

....

$ git add .

$ git commit -m 'ch11'

The code for this chapter can be found on the official Github repository209.

Conclusion

With more time we might update the reviews’ functionality with a form on the page

itself, however this means AJAX calls using jQuery, React, Vue, or another dedicated
209https://github.com/wsvincent/djangoforprofessionals/tree/master/ch11-reviews

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch11-reviews
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch11-reviews

Chapter 11: Reviews App 233

JavaScript framework. Unfortunately covering that fully is well beyond the scope of

this book.

As the project grows it might also make sense to split reviews off into its own

dedicated app. Doing so is a very subjective call. In general, keeping things as simple

as possible–adding foreign keys within an existing app until it becomes too large to

easily understand–is a solid approach.

In the next chapter we will add image uploads to our site so there can be covers for

each book.

Chapter 12: File/Image Uploads
We previously configured static assets such as images in Chapter 6, but user-

uploaded files, such as book covers, are somewhat different. To start with, Django

refers to the former as static whereas anything uploaded by a user, whether it be a

file or an image, is referred to as media.

The process for adding this feature for files or images is similar, but for images the

Python image processing library Pillow210 must be installed which includes additional

features such as basic validation.

Let’s install pillow using our by-now-familiar pattern of installing it within Docker,

stopping our containers, and forcing a build of the new image.

Command Line

$ docker-compose exec web pipenv install pillow==6.2.1

$ docker-compose down

$ docker-compose up -d --build

Media Files

Fundamentally the difference between static and media files is that we can trust the

former, but we definitely can’t trust the latter by default. There are always security

concerns211 when dealing with user-uploaded content212. Notably, it’s important to

validate all uploaded files to ensure they are what they say they are. There are a
210https://python-pillow.org/
211https://docs.djangoproject.com/en/2.2/ref/models/fields/#file-upload-security
212https://docs.djangoproject.com/en/2.2/topics/security/#user-uploaded-content

https://python-pillow.org/
https://docs.djangoproject.com/en/2.2/ref/models/fields/#file-upload-security
https://docs.djangoproject.com/en/2.2/ref/models/fields/#file-upload-security
https://docs.djangoproject.com/en/2.2/topics/security/#user-uploaded-content
https://python-pillow.org/
https://docs.djangoproject.com/en/2.2/ref/models/fields/#file-upload-security
https://docs.djangoproject.com/en/2.2/topics/security/#user-uploaded-content

Chapter 12: File/Image Uploads 235

number of nasty ways a malicious actor can attack a website that blindly accepts user

uploads.

To start let’s add two new configurations to the bookstore_project/settings.py file.

By default MEDIA_URL and MEDIA_ROOT are empty and not displayed so we need to

configure them:

• MEDIA_ROOT213 is the absolute file system path to the directory for user-

uploaded files

• MEDIA_URL214 is the URL we can use in our templates for the files

For convenience lump the static and media file configurations together so add both

of these settings after STATICFILES_FINDERS near the bottom of the file. We’ll use the

common convention of calling both media. Don’t forget to include the trailing slash /

for MEDIA_URL!

Code

bookstore_project/settings.py

MEDIA_URL = '/media/' # new

MEDIA_ROOT = os.path.join(BASE_DIR, 'media') # new

Next add a new directory called media and a subdirectory called covers within it.

Command Line

$ mkdir media

$ mkdir media/covers

And finally since user-uploaded content is assumed to exist in a production context,

to see media items locally we need to update bookstore_project/urls.py to show the

files locally. This involves importing both settings and static at the top and then

adding an additional line at the bottom.
213https://docs.djangoproject.com/en/2.2/ref/settings/#media-root
214https://docs.djangoproject.com/en/2.2/ref/settings/#media-url

https://docs.djangoproject.com/en/2.2/ref/settings/#media-root
https://docs.djangoproject.com/en/2.2/ref/settings/#media-url
https://docs.djangoproject.com/en/2.2/ref/settings/#media-root
https://docs.djangoproject.com/en/2.2/ref/settings/#media-url

Chapter 12: File/Image Uploads 236

Code

bookstore_project/urls.py

from django.conf import settings # new

from django.conf.urls.static import static # new

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('allauth.urls')),

Local apps

path('', include('pages.urls')),

path('books/', include('books.urls')),

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # new

Models

With our generic media configuration out of the way we can now turn to our models.

To store these images we’ll use Django’s ImageField215 which comes with some basic

image processing validation included.

The name of the field is cover andwe specify the location of the uploaded imagewill be

in MEDIA_ROOT/covers (the MEDIA_ROOT part is implied based on our earlier settings.py

config).
215https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ImageField

https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ImageField
https://docs.djangoproject.com/en/2.2/ref/models/fields/#django.db.models.ImageField

Chapter 12: File/Image Uploads 237

Code

books/models.py

class Book(models.Model):

id = models.UUIDField(

primary_key=True,

default=uuid.uuid4,

editable=False)

title = models.CharField(max_length=200)

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

cover = models.ImageField(upload_to='covers/') # new

def __str__(self):

return self.title

def get_absolute_url(self):

return reverse('book_detail', kwargs={'pk': str(self.pk)})

If we wanted to allow uploads of a regular file rather than an image file the only

difference could be to change ImageField to FileField.

Since we’ve updated the model it’s time to create a migrations file.

Chapter 12: File/Image Uploads 238

Command Line

$ docker-compose exec web python manage.py makemigrations books

You are trying to add a non-nullable field 'cover_image' to book

without a default; we can't do that (the database needs something to populate

existing rows).

Please select a fix:

1) Provide a one-off default now (will be set on all existing rows with a

null value for this column)

2) Quit, and let me add a default in models.py

Select an option:

Oops! What happened? We’re adding a new database field, but we already have three

entries in our database for each book. Yet we failed to set a default value for cover.

To fix this type 2 to quit and we’ll add a blank216 field set to True for existing images.

Code

bookstore_project/models.py

cover = models.ImageField(upload_to='covers/', blank=True) # new

It’s common to see blank and nulla used together to set a default value on a field. A

gotcha is that the field type – ImageField vs. CharField and so on – dictates how to use

them properly so closely read the documentation for future use.
ahttps://docs.djangoproject.com/en/2.2/ref/models/fields/#null

Now we can create a migrations file without errors.

216https://docs.djangoproject.com/en/2.2/ref/models/fields/#blank

https://docs.djangoproject.com/en/2.2/ref/models/fields/#blank
https://docs.djangoproject.com/en/2.2/ref/models/fields/#null
https://docs.djangoproject.com/en/2.2/ref/models/fields/#null
https://docs.djangoproject.com/en/2.2/ref/models/fields/#blank

Chapter 12: File/Image Uploads 239

Command Line

$ docker-compose exec web python manage.py makemigrations books

Migrations for 'books':

books/migrations/0003_book_cover.py

- Add field cover to book

And then apply the migration to our database.

Command Line

$ docker-compose exec web python manage.py migrate

Operations to perform:

Apply all migrations: account, admin, auth, books, contenttypes, reviews, ses

sions, sites, users

Running migrations:

Applying books.0003_book_cover... OK

Admin

We’re in the home stretch now! Navigate over to the admin and to the entry for the

book “Django for Professionals.” The cover field is visible already and we already have

a copy of it locally within static/images/djangoforprofessionals.jpg so use that file

for the upload and then click the “Save” button in bottom right.

Chapter 12: File/Image Uploads 240

Admin add cover

This will redirect back to the main Books section. Click on the link again for “Django

for Profesionals” and we can see it currently exists in our desired location of covers/.

Chapter 12: File/Image Uploads 241

Admin with cover

Template

OK, final step. Let’s update our template to display the book cover on the individual

page. The route will be book.cover.url pointing to the location of the cover in our file

system.

Chapter 12: File/Image Uploads 242

Here’s what the updated book_detail.html file looks like with this one line change

above the title.

Code

templates/books/book_detail.html

{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}

<div class="book-detail">

<h2>{{ book.title }}</h2>

<p>Author: {{ book.author }}</p>

<p>Price: {{ book.price }}</p>

<div>

<h3>Reviews</h3>

{% for review in book.reviews.all %}

{{ review.review }} ({{ review.author }})

{% endfor %}

</div>

</div>

{% endblock content %}

If you now visit the page for “Django for Professionals” you’ll see the cover image

proudly there!

Chapter 12: File/Image Uploads 243

Cover image

One potential gotcha is that our template now expects a cover to be present. If you

navigate to either of the two other books, for which we have not added a cover, you’ll

see the following error message.

Chapter 12: File/Image Uploads 244

Cover image error

We must add some basic logic to our template so that if a cover is not present the

template doesn’t look for it! This can be done using an if statement that checks for

book.cover and displays it if it exists.

Code

templates/books/book_detail.html

{% extends '_base.html' %}

{% block title %}{{ book.title }}{% endblock title %}

{% block content %}

<div class="book-detail">

{% if book.cover %}

{% endif %}

<p>Author: {{ book.author }}</p>

Chapter 12: File/Image Uploads 245

...

If you refresh either book page now you’ll see they display the correct page albeit

without a cover.

Next Steps

There are several additional steps that might be nice to take in a project, but are

beyond the scope of this book. These include adding dedicated create/edit/delete

forms for the creation of books and cover image. A quite lengthy list of extra

validations can and should be placed on the image-uploading form to ensure that

only a normal image is added to the database.

A further step would be to store media files in a dedicated CDN (Content Delivery

Network) for additional security. This can also be helpful for performance on very

large sites for static files, but for media files is a good idea regardless of the size.

Finally tests would be nice to have here although they would be primarily focused on

the form validation section, not the basic image-uploading via the admin. Again this

is an area that can become quite complex, but is worthy of further study.

Git

Make sure to create a new Git commit for the changes in this chapter.

Chapter 12: File/Image Uploads 246

Command Line

$ git status

$ git add .

$ git commit -m 'ch12'

As always you can compare your code against the official source code on Github217.

Conclusion

This chapter demonstrated how to add user files to a project. In practice it is

straightforward, but the additional layer of security concerns makes it an area worthy

of focus at scale.

In the next chapter we will add permissions to our site to lock it down.
217https://github.com/wsvincent/djangoforprofessionals/tree/master/ch12-file-image-uploads

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch12-file-image-uploads
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch12-file-image-uploads

Chapter 13: Permissions
Currently there are no permissions set on our Bookstore project. Any user, even one

not logged in, can visit any page and perform any available action.While this is fine for

prototyping, implementing a robust permissions structure is a must before deploying

a website to production.

Django comes with built-in authorization options218 for locking down pages to either

logged in users, specific groups, or users with the proper individual permission.

Logged-In Users Only

Confusingly there are multiple ways to add even the most basic permission: re-

stricting access only to logged-in users. It can be done in a raw way219 using the

login_required()220 decorator, or since we are using class-based views so far via the

LoginRequired mixin221.

Let’s start by limiting access to the Books pages only to logged-in users. There is a link

for it in the navbar so this is not the case of a user accidentally finding a URL (which

also can happen); in this case the URL is quite public.

First import LoginRequiredMixin at the top and then add it before ListView sincemixins

are loaded from left-to-right. That way the first thing that is checked is whether

the user is logged in; if they’re not there’s no need to load the ListView. The other

part is setting a login_url for the user to be redirected to. This is the URL name for
218https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization
219https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-raw-way
220https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator
221https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator

https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-raw-way
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-raw-way
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-login-required-decorator

Chapter 13: Permissions 248

log in which, since we’re using django-allauth is account_login. If we were using the

traditional Django authentication system then this link would be called simply login.

The structure for BookDetailView is the same: add LoginRequiredMixin and a login_url

route.

Code

books/views.py

from django.contrib.auth.mixins import LoginRequiredMixin # new

from django.views.generic import ListView, DetailView

from .models import Book

class BookListView(LoginRequiredMixin, ListView): # new

model = Book

context_object_name = 'book_list'

template_name = 'books/book_list.html'

login_url = 'account_login' # new

class BookDetailView(LoginRequiredMixin, DetailView): # new

model = Book

context_object_name = 'book'

template_name = 'books/book_detail.html'

login_url = 'account_login' # new

And that’s it! If you now log out of your account and click on the “Books” link it will

automatically redirect you to the Log In page. However if you are logged in, the Books

page loads normally.

Chapter 13: Permissions 249

Even if you somehow knew the UUID of a specific book page you’d be redirected to

Log In as well!

Permissions

Django comes with a basic permissions system222 that is controlled through the

Django admin. To demonstrate it we need to create a new user account. Navigate

back to the Admin homepage and then click on “+ Add” next to Users.

We’ll call this new user special and set a password of testpass123. Click on the “Save”

button.

Add User

The second page allows us to set an “Email address” to special@email.com. We’re using
222https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization

https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization
https://docs.djangoproject.com/en/2.2/topics/auth/default/#permissions-and-authorization

Chapter 13: Permissions 250

django-allauth so that our log in page requires only email and the sign up page also

only uses email, but since we didn’t customize the admin as well it still expects a

username when creating a new user this way.

User Email

If we had wanted to fully rip out the default user system that would mean using

AbstractBaseUsera rather than AbstractUser back in Chapter 3 when we configured

our custom user model.
ahttps://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.

AbstractBaseUser

Scrolling down further on the page to the bottom there are options to set Groups as

well as User permissions. This is a long list of defaults Django provides.

https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#django.contrib.auth.models.AbstractBaseUser

Chapter 13: Permissions 251

User Permissions

For now we won’t use them since we’ll create a custom permission in the next section

so just click on the “Save” button in the lower right corner so that our email address

is updated for the user account.

Chapter 13: Permissions 252

Custom Permissions

Setting custom permissions223 is a much more common occurrence in a Django

project. We can set them via the Meta class on our database models.

For example, let’s add a special status so that an author can read all books. In other

words they have access to the DetailView. We could be much more specific with the

permissions, restricting them per book, but this is a good first step.

In the books/models.py file we’ll add a Meta class and set both the permission name

and a description which will be visible in the admin.

Code

books/models.py

...

class Book(models.Model):

id = models.UUIDField(

primary_key=True,

default=uuid.uuid4,

editable=False)

title = models.CharField(max_length=200)

author = models.CharField(max_length=200)

price = models.DecimalField(max_digits=6, decimal_places=2)

cover = models.ImageField(upload_to='covers/', blank=True)

class Meta: # new

permissions = [

('special_status', 'Can read all books'),

]
223https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#custom-permissions

https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#custom-permissions
https://docs.djangoproject.com/en/2.2/topics/auth/customizing/#custom-permissions

Chapter 13: Permissions 253

def __str__(self):

return self.title

def get_absolute_url(self):

return reverse('book_detail', args=[str(self.id)])

...

The order of the inner classes and methods here is deliberate. It follows the Model

stylea section from the Django documentation.
ahttps://docs.djangoproject.com/en/2.2/internals/contributing/writing-code/coding-style/

#model-style

Since we have updated our database model we must create a new migrations file and

then apply it.

Command Line

$ docker-compose exec web python manage.py makemigrations books

$ docker-compose exec web python manage.py migrate

User Permissions

Nowwe need to apply this custom permission to our new special user. Thanks to the

admin this is not a difficult task. Navigate to the Users section where the three exist-

ing users are listed: special@email.com, testuser@email.com, and will@wsvincent.com

which is my superuser account.

https://docs.djangoproject.com/en/2.2/internals/contributing/writing-code/coding-style/#model-style
https://docs.djangoproject.com/en/2.2/internals/contributing/writing-code/coding-style/#model-style
https://docs.djangoproject.com/en/2.2/internals/contributing/writing-code/coding-style/#model-style
https://docs.djangoproject.com/en/2.2/internals/contributing/writing-code/coding-style/#model-style

Chapter 13: Permissions 254

Three Users

Click on the special@email.com user and then scroll down to User permissions near

the bottom of the page. Within it search for books | book | Can read all books

and select it by clicking on the -> arrow to add it to “Chosen user permissions.” Don’t

forget to click the “Save” button at the bottom of the page.

Chapter 13: Permissions 255

Add Permission

PermissionRequiredMixin

The last step is to apply the custompermission using the PermissionRequiredMixin224.

One of the many great features of class-based views is we can implement advanced
224https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin

https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin

Chapter 13: Permissions 256

functionality with very little code on our part and this particular mixin is a good

example of that.

Add PermissionRequiredMixin to our list of imports on the top line. Then add it to

DetailView after LoginRequiredMixin but before DetailView. The order should make

sense: if a user isn’t already logged in it makes no sense to do the additional check of

whether they have permission. Finally add a permission_required field which specifies

the desired permission. In our case its name is special_status and it exists on the

booksmodel.

Code

books/views.py

from django.contrib.auth.mixins import (

LoginRequiredMixin,

PermissionRequiredMixin # new

)

from django.views.generic import ListView, DetailView

from .models import Book

class BookListView(LoginRequiredMixin, ListView):

model = Book

context_object_name = 'book_list'

template_name = 'books/book_list.html'

login_url = 'account_login'

class BookDetailView(

LoginRequiredMixin,

Chapter 13: Permissions 257

PermissionRequiredMixin, # new

DetailView):

model = Book

context_object_name = 'book'

template_name = 'books/book_detail.html'

login_url = 'account_login'

permission_required = 'books.special_status' # new

Although we are not doing it here it is possible to add multiple permissions225 via the

permission_required field.

To try out our work, log out of the admin. This is necessary because the superuser

account is used for the admin and by default has access to everything. Not a great

user account to test with!

Log in to the Bookstore site using the testuser@email.com account and then navigate

to the Books page listing the three available titles. If you then click on any one of the

books, you’ll see a “403 Forbidden” error because permission was denied.

403 Error Page

Now go back to the homepage at http://127.0.0.1:8000/226 and log out. Then log in

using the special@email.com account. Navigate again to the Books page and each

individual book page is accessible.
225https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin
226http://127.0.0.1:8000/

https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin
http://127.0.0.1:8000/
https://docs.djangoproject.com/en/2.2/topics/auth/default/#the-permissionrequiredmixin-mixin
http://127.0.0.1:8000/

Chapter 13: Permissions 258

Groups & UserPassesTestMixin

The third permissions mixin available is UserPassesTestMixin227 which restricts a

view’s access only to users who pass a specific test.

And in large projects Groups228, which are Django’s way of applying permissions to a

category of users, become prominent. If you look on the Admin homepage there is a

dedicated Groups section where they can be added and have permissions set. This is

far more efficient than adding permissions on a per-user basis.

An example of groups is if you have a premium section on your website, a user

upgrading could switch them into the premium group and then have access to

however many specific extra permissions that involves.

Tests

It’s a good idea to run tests whenever a code change has been made. After all, the

whole point of testing is to check that we did not inadvertently cause another part of

the application to fail.

227https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
228https://docs.djangoproject.com/en/2.2/topics/auth/default/#groups

https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/2.2/topics/auth/default/#groups
https://docs.djangoproject.com/en/2.2/topics/auth/default/#django.contrib.auth.mixins.UserPassesTestMixin
https://docs.djangoproject.com/en/2.2/topics/auth/default/#groups

Chapter 13: Permissions 259

Command Line

$ docker-compose exec web python manage.py test

...

Ran 17 tests in 0.519s

FAILED (failures=2)

It turns out we do have some failing tests! Specifically test_book_list_view and test_-

book_detail_view are both complain of a 302 status code,meaning a redirection, rather

than a 200 for success. This is because we’ve just added the requirement that log in is

required to view the list of books and for a detail page the user must have a special_-

status permission.

The first step is to import Permission from the built-in auth models. Then within our

BookTests in books/tests.py add the special_status permission to the setUp method

so it is available for all our tests. We’ll transfer the existing single test_book_list_view

test into one for logged in users and one for logged out users. And we’ll update the

detail view test to check if a user has the correct permission.

Code

books/tests.py

from django.contrib.auth import get_user_model

from django.contrib.auth.models import Permission # new

from django.test import Client, TestCase

from django.urls import reverse

from .models import Book, Review

class BookTests(TestCase):

Chapter 13: Permissions 260

def setUp(self):

self.user = get_user_model().objects.create_user(

username='reviewuser',

email='reviewuser@email.com',

password='testpass123'

)

self.special_permission = Permission.objects.get(codename='special_status') \

new

self.book = Book.objects.create(

title='Harry Potter',

author='JK Rowling',

price='25.00',

)

self.review = Review.objects.create(

book = self.book,

author = self.user,

review = 'An excellent review',

)

def test_book_listing(self):

...

def test_book_list_view_for_logged_in_user(self): # new

self.client.login(email='reviewuser@email.com', password='testpass123')

response = self.client.get(reverse('book_list'))

self.assertEqual(response.status_code, 200)

self.assertContains(response, 'Harry Potter')

self.assertTemplateUsed(response, 'books/book_list.html')

Chapter 13: Permissions 261

def test_book_list_view_for_logged_out_user(self): # new

self.client.logout()

response = self.client.get(reverse('book_list'))

self.assertEqual(response.status_code, 302)

self.assertRedirects(

response, '%s?next=/books/' % (reverse('account_login')))

response = self.client.get(

'%s?next=/books/' % (reverse('account_login')))

self.assertContains(response, 'Log In')

def test_book_detail_view_with_permissions(self): # new

self.client.login(email='reviewuser@email.com', password='testpass123')

self.user.user_permissions.add(self.special_permission)

response = self.client.get(self.book.get_absolute_url())

no_response = self.client.get('/books/12345/')

self.assertEqual(response.status_code, 200)

self.assertEqual(no_response.status_code, 404)

self.assertContains(response, 'Harry Potter')

self.assertContains(response, 'An excellent review')

self.assertTemplateUsed(response, 'books/book_detail.html')

If you run the test suite again all tests should pass.

Chapter 13: Permissions 262

Command Line

$ docker-compose exec web python manage.py test

...

Ran 18 tests in 0.944s

OK

Git

Make sure to create a new Git commit for the changes in this chapter.

Command Line

$ git status

$ git add .

$ git commit -m 'ch13'

As always you can compare your code again the official source code on Github229.

Conclusion

Permissions and groups are a highly subjective area that vary widely from project

to project. However the basics remain the same and mimic what we’ve covered here.

The first pass is typically to restrict access to only logged in users, then add additional

custom permissions from there around groups or users.

In the next chapter we’ll build upon this by adding payments to our Bookstore site.
229https://github.com/wsvincent/djangoforprofessionals/tree/master/ch13-permissions

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch13-permissions
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch13-permissions

Chapter 14: Orders with Stripe
Stripe230 is one of the most popular payment providers and what we’ll use in this book

to power book order purchases. It has two main offerings from Stripe: Checkout231

which allows for the use of pre-built forms from Stripe and Connect232 which is used

for a marketplace with multiple buyers and sellers. For example if we added book

authors as users andwanted to process payments on their behalf, taking a commission

for ourselves on the Bookstore website, then we would use Connect. But since we are

just processing payments we will use Checkout.

Checkout itself is undergoing rapid iteration. There are now two Checkout options233

available to developers: a “Client Integration” where the payment form is hosted on

Stripe itself and a “Server Integration” where we host the form ourselves. Since we’re

using Django we’ll opt for the Server Integration approach.

The second major change is a new API that relies on Sessions234, however, as of

the writing of this book, Sessions is not fully implemented and poorly documented.

Therefore we will use the traditional Stripe approach which will be supported well

into the future. Once you’ve understood how Stripe works under-the-hood making

the switch in the future will be much easier.

It’s easy to become lost in all the complexity aroundpayments, however, the important

part for this book is understanding how payments are securely processed. That is

what we’ll do here. By the end of this chapter we’ll have a working payments solution

and the ability to further customize it as needed.
230https://stripe.com/
231https://stripe.com/docs/payments/checkout
232https://stripe.com/docs/connect
233https://stripe.com/docs/payments/checkout#choose-your-integration-path
234https://stripe.com/docs/api/checkout/sessions

https://stripe.com/
https://stripe.com/docs/payments/checkout
https://stripe.com/docs/connect
https://stripe.com/docs/payments/checkout#choose-your-integration-path
https://stripe.com/docs/api/checkout/sessions
https://stripe.com/
https://stripe.com/docs/payments/checkout
https://stripe.com/docs/connect
https://stripe.com/docs/payments/checkout#choose-your-integration-path
https://stripe.com/docs/api/checkout/sessions

Chapter 14: Orders with Stripe 264

Payments Flow

Before we become lost in the implementation details, let’s plan out how the payments

flow shouldwork. Currently there is a books page that lists all available books and then

individual pages for each book. In the last chapter we saw how to add a permission

for access to all books. Ultimately when an order is successfully completed, that user

needs to have this permission flag flipped in the database. That’s all we’re doing here!

When a user is on the books pagewe’ll include a link to a dedicated orders pagewhich,

upon success, will redirect back to the books page with all books now available. We

can add in some template logic to replace “Order” buttons with “Read” buttons for

the appropriate user.

Keep this high-level flow in mind as we go through the implementation process!

Orders app

We’ll create a dedicated orders app and then configure it in the standard way: adding

to INSTALLED_APPS configuration, updating urls.py files, creating views, and then

templates.

Ready? Here we go. Start by creating a new orders app.

Command Line

$ docker-compose exec web python manage.py startapp orders

Then add it to the INSTALLED_APPS configuration in bookstore_project/settings.py.

Chapter 14: Orders with Stripe 265

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites',

Third-party

'crispy_forms',

'allauth',

'allauth.account',

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

'books.apps.BooksConfig',

'orders.apps.OrdersConfig', # new

]

Update the top-level bookstore_project/urls.py file with orders routes whichwill live

at orders/.

Chapter 14: Orders with Stripe 266

Code

bookstore_project/urls.py

from django.conf import settings

from django.conf.urls.static import static

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('admin/', admin.site.urls),

User management

path('accounts/', include('allauth.urls')),

Local apps

path('', include('pages.urls')),

path('books/', include('books.urls')),

path('orders/', include('orders.urls')), # new

] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

And then create a orders/urls.py file to create app-level URL routes.

Command Line

$ touch orders/urls.py

Since the top-level urls.py file is at orders/we can simply use the empty string '' for

the main orders page. Provide a name of the path of orders and reference the view

OrdersPageView which we’ll create next.

Chapter 14: Orders with Stripe 267

Code

orders/urls.py

from django.urls import path

from .views import OrdersPageView

urlpatterns = [

path('', OrdersPageView.as_view(), name='orders'),

]

The view file will simply use TemplateView for now.

Code

orders/views.py

from django.views.generic.base import TemplateView

class OrdersPageView(TemplateView):

template_name = 'orders/purchase.html'

Finally we have the template which will live in a templates/orders/ directory.

Command Line

$ mkdir templates/orders

$ touch templates/orders/purchase.html

Let’s just use a placeholder heading of “Orders page” for now to test that it’s working

correctly.

Chapter 14: Orders with Stripe 268

Code

<!-- templates/orders/purchase.html -->

{% extends '_base.html' %}

{% block title %}Orders{% endblock title %}

{% block content %}

<h1>Orders page</h1>

{% endblock content %}

The code is all done. But we must restart our containers so that the settings.py file

update–adding orders to INSTALLED_APPS–is loaded into Django.

Command Line

$ docker-compose down

$ docker-compose up -d

In your web browser visit http://127.0.0.1:8000/orders/235 to see our new orders

page.

Orders Page

235http://127.0.0.1:8000/orders/

http://127.0.0.1:8000/orders/
http://127.0.0.1:8000/orders/

Chapter 14: Orders with Stripe 269

Stripe

We turn our attention to Stripe which needs to be installed locally. The Python library

for Stripe is currently undergoing rapid iteration and is available on Github236.

Command Line

$ docker-compose exec web pipenv install stripe==2.32.0

$ docker-compose down

$ docker-compose up -d --build

Then go to the Stripe website and register for a new account237. Stripe regularly

updates its new user onboarding flow, but as of the writing of this book the next page

asks whether you want to use the Stripe API or an app. We want the API so select that

option which redirects to the dashboard238 page.

Adding an account name is optional but recommended in the upper left corner. I’ve

selected “DFP Book”. Now click on the “Developers” link in the left sidebar.
236https://github.com/stripe/stripe-python
237https://dashboard.stripe.com/register
238https://dashboard.stripe.com/test/dashboard

https://github.com/stripe/stripe-python
https://dashboard.stripe.com/register
https://dashboard.stripe.com/test/dashboard
https://github.com/stripe/stripe-python
https://dashboard.stripe.com/register
https://dashboard.stripe.com/test/dashboard

Chapter 14: Orders with Stripe 270

Developers Link

From dropdown list click on “API keys”.

Chapter 14: Orders with Stripe 271

API Keys Link

Each Stripe account has four API keys: two for testing and two for live use in

production. Currently we are viewing the Test keys. We know this because there is a

“TEST DATA” indicator at the top of the page and the keys (also called tokens) contain

test in the name.

Chapter 14: Orders with Stripe 272

Test Keys

Viewing live keys requires both confirming your account via email and filling out an

“Activate Your Account” page that is prompted if you click on the link at the top to

toggle the keys.

Chapter 14: Orders with Stripe 273

Activate Your Account

Filling this page out is somewhat onerous, but we are dealing with money here so the

extra information is warranted. However doing so now is optional. We can use the

test keys and later swap in the live keys when we actually deploy the final site.

Publishable & Secret Keys

There are two types of keys for testing: a “publishable key” and a “secret key”. The

publishable key will be embedded in the JavaScript on our webpage; it is therefore

public and visible. The secret key is stored on the server and is for private use only.

Keep this key secret!

That means using environment variables which we’ll do now. At the bottom of your

bookstore_project/settings.py file, add the following two lines.

Chapter 14: Orders with Stripe 274

Code

bookstore_project/settings.py

Stripe

STRIPE_TEST_PUBLISHABLE_KEY=os.environ.get('STRIPE_TEST_PUBLISHABLE_KEY')

STRIPE_TEST_SECRET_KEY=os.environ.get('STRIPE_TEST_SECRET_KEY')

Add the environment variables to docker-compose.yml in the web section.

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

environment:

- SECRET_KEY=p_o3vp1rg5)t^lxm9-43%0)s-=1qpeq%o7gfq+e4#*!t+_ev82

- DEBUG=True

- STRIPE_TEST_PUBLISHABLE_KEY=<pk_test_your_publishable_key_here>

- STRIPE_TEST_SECRET_KEY=<sk_test_your_secret_key_here>

volumes:

- .:/code

ports:

- 8000:8000

depends_on:

- db

db:

image: postgres:11

volumes:

Chapter 14: Orders with Stripe 275

- postgres_data:/var/lib/postgresql/data/

volumes:

postgres_data:

Note that both environment variables should be filled with your unique API keys.

Never share–especially in a book!–your actual Stripe secret key.

Then restart the Docker containers to load in the environment variables.

Command Line

$ docker-compose down

$ docker-compose up -d

Stripe Checkout

Step one is to add the Stripe Checkout form to our orders/purchase.html template.

Code

<!-- templates/orders/purchase.html -->

{% extends '_base.html' %}

{% block title %}Orders{% endblock title %}

{% block content %}

<h1>Orders page</h1>

<p>Buy for $39.00</p>

<script src="https://checkout.stripe.com/checkout.js" class="stripe-button"

data-key="{{ stripe_key }}"

Chapter 14: Orders with Stripe 276

data-description="All Books"

data-amount="3900"

data-locale="auto">

</script>

{% endblock content %}

If you refresh the web page at http://127.0.0.1:8000/orders/239 the default Stripe

Checkout blue button appears.

Orders Page

Click on the “Pay with Card” button and the Checkout modal appears. We can test the

form by using one of several test card numbers240 Stripe provides. Let’s use 4242 4242

4242 4242. Make sure the expiration date is in the future and add any 3 numbers for

the CVC.
239http://127.0.0.1:8000/orders/
240https://stripe.com/docs/testing#cards

http://127.0.0.1:8000/orders/
https://stripe.com/docs/testing#cards
http://127.0.0.1:8000/orders/
https://stripe.com/docs/testing#cards

Chapter 14: Orders with Stripe 277

Checkout Modal

But there’s a problem after clicking on the “Pay $39.00” blue button. Stripe notes that

we did not set a valid publishable key!

Chapter 14: Orders with Stripe 278

Checkout Modal Error

This value needs to be passed into our template and while we could hard code this it’s

far better to pass in the value as a variable matching our environment variable setting.

In Django each template is rendered with context data provided by the views.py file.

By overriding get_context_data()241 we can elegantly pass this information in with

our TemplateView.

Update orders/views.py as follows.

241https://docs.djangoproject.com/en/2.2/ref/class-based-views/mixins-simple/#django.views.generic.base.

ContextMixin.get_context_data

https://docs.djangoproject.com/en/2.2/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/2.2/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data
https://docs.djangoproject.com/en/2.2/ref/class-based-views/mixins-simple/#django.views.generic.base.ContextMixin.get_context_data

Chapter 14: Orders with Stripe 279

Code

orders/views.py

from django.conf import settings # new

from django.views.generic.base import TemplateView

class OrdersPageView(TemplateView):

template_name = 'orders/purchase.html'

def get_context_data(self, **kwargs): # new

context = super().get_context_data(**kwargs)

context['stripe_key'] = settings.STRIPE_TEST_PUBLISHABLE_KEY

return context

Now refresh the web page and try again. It will “work” in that the button turns

green with a checkmark indicating payment went through. If you look at the Stripe

Dashboard and click on “Logs” under “Developers” in the left menu, you can see that

tokens were created.

Chapter 14: Orders with Stripe 280

Stripe Dashboard Logs

But if you then click on “Payments” in the same lefthand menu, there are no charges.

So what’s happening?

Think back to the Stripe flow. We have used the publishable key to send the credit

card information to Stripe, and Stripe has sent us back a unique token for the order.

But we haven’t used that token yet to make a charge! Recall that we send an order

form to Stripe with the Publishable Key, Stripe validates it and sends back a token,

and then we process the charge using both the token and our own Secret Key.

That’s the missing charge piece which we’ll implement now.

Chapter 14: Orders with Stripe 281

Charges

Creating a charge is not as hard as it seems. The first step is to make our payment

button a Django form so we can pass in additional information via a charge view that

we’ll define next. And since it is a POST we include the {% csrf_token %} for additional

security.

Code

<!-- templates/orders/purchase.html -->

{% extends '_base.html' %}

{% block title %}Orders{% endblock title %}

{% block content %}

<h1>Orders page</h1>

<p>Buy for $39.00</p>

<form action="{% url 'charge' %}" method="post">

{% csrf_token %}

<script src="https://checkout.stripe.com/checkout.js" class="stripe-button"

data-key="{{ stripe_key }}"

data-description="All Books"

data-amount="3900"

data-locale="auto">

</script>

</form>

{% endblock content %}

Note it will redirect to a charge page so let’s create that now.

Chapter 14: Orders with Stripe 282

Command Line

$ touch templates/orders/charge.html

Add some text to it.

Code

<!-- templates/orders/charge.html -->

{% extends '_base.html' %}

{% block title %}Charge{% endblock title %}

{% block content %}

<h2>Thank you for your order! You now have access to

All Books.</h2>

{% endblock content %}

Then update our URL routes with the new orders/charge/ page.

Code

orders/urls.py

from django.urls import path

from .views import OrdersPageView, charge # new

urlpatterns = [

path('charge/', charge, name='charge'), # new

path('', OrdersPageView.as_view(), name='orders'),

]

Chapter 14: Orders with Stripe 283

Now for the “magic” logic which will occur in the orders/views.py file. Create a charge

view that receives the token from Stripe, makes the charge, and then redirects to the

charge page upon success.

At the top of the file import the stripe library we already installed. It will look for

a secret key called stripe.api_key which we can set to that value. Then also import

render242 which will be used for the function-based charge view.

Code

orders/views.py

import stripe # new

from django.conf import settings

from django.views.generic.base import TemplateView

from django.shortcuts import render # new

stripe.api_key = settings.STRIPE_TEST_SECRET_KEY # new

class OrdersPageView(TemplateView):

template_name = 'orders/purchase.html'

def get_context_data(self, **kwargs):

context = super().get_context_data(**kwargs)

context['stripe_key'] = settings.STRIPE_TEST_PUBLISHABLE_KEY

return context

def charge(request): # new

if request.method == 'POST':

charge = stripe.Charge.create(

amount=3900,
242https://docs.djangoproject.com/en/2.2/topics/templates/#django.template.backends.base.Template.render

https://docs.djangoproject.com/en/2.2/topics/templates/#django.template.backends.base.Template.render
https://docs.djangoproject.com/en/2.2/topics/templates/#django.template.backends.base.Template.render

Chapter 14: Orders with Stripe 284

currency='usd',

description='Purchase all books',

source=request.POST['stripeToken']

)

return render(request, 'orders/charge.html')

The charge function-based view assumes a POST request: we are sending data to Stripe

here. Wemake a charge that includes the amount, currency, description, and crucially

the source which has the unique token Stripe generated for this transaction called

stripeToken. Then we return the request object and load the charge.html template.

Adding robust error handling here is probably warranted on a large site, but beyond

the scope of this chapter.

Ok, refresh the orders page at http://127.0.0.1:8000/orders/243. Click on the “Paywith

Card” button again and use the credit card number 4242 4242 4242 4242, an expiration

date in the future such as 01/22, and you’ll end up on our charge page.

Charge Page

243http://127.0.0.1:8000/orders/

http://127.0.0.1:8000/orders/
http://127.0.0.1:8000/orders/

Chapter 14: Orders with Stripe 285

To confirm a charge was actually made, go back to the Stripe dashboard under

“Payments” on the lefthand sidebar.

Stripe Payment

It worked!

Stripe + Permissions

There’s one last step we must implement and that’s to link up the order with a

change in the given user’s permissions. In other words, currently we are charging

$39 successfully but the user is not getting anything in return! There is still no access

to the individual books.

But this is easily fixed. Again we’ll focus solely on the orders/views.py file. At the

top import Permission and then under the charge we first access the appropriate

Chapter 14: Orders with Stripe 286

permission which is called special_status. Then we find the current user using

request.user. And finally we add the given permission change to the user’s permission

set.

Here is what it looks like in code:

Code

orders/views.py

import stripe

from django.conf import settings

from django.contrib.auth.models import Permission # new

from django.views.generic.base import TemplateView

from django.shortcuts import render

stripe.api_key = settings.STRIPE_TEST_SECRET_KEY

class OrdersPageView(TemplateView):

template_name = 'orders/purchase.html'

def get_context_data(self, **kwargs):

context = super().get_context_data(**kwargs)

context['stripe_key'] = settings.STRIPE_TEST_PUBLISHABLE_KEY

return context

def charge(request): # new

Get the permission

permission = Permission.objects.get(codename='special_status')

Get user

u = request.user

Chapter 14: Orders with Stripe 287

Add to user's permission set

u.user_permissions.add(permission)

if request.method == 'POST':

charge = stripe.Charge.create(

amount=3900,

currency='usd',

description='Purchase all books',

source=request.POST['stripeToken']

)

return render(request, 'orders/charge.html')

To test this out log in with our testuser@email.com acccount. It does not have access

to this special permission which can be confirmed both within the Users section of

the Admin under “Permissions” and also by the simple fact that if you try to access

any individual books with this account, you won’t be able to!

Refresh the orders page and attempt to make a charge again. It will complete. Now

visit the books list page and you can click through to each individual book. Success!

Templates

The final step is to add a button that links to the Orders page from the Books page.

That means updating the books/book_list.html template by adding a Bootstrap styled

button. Since the URL name of the orders page is orders–recall that this was set in

orders/urls.py–we can use the url template tag to link to it.

The ultimate code is a one-line update at the top of the content in the file.

Chapter 14: Orders with Stripe 288

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

Purchase All Books

{% for book in book_list %}

<div>

<h2>{{ book.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

Refresh the books page and the button is now visible.

Orders Link

Clicking on it redirects to the Orders page. An additional step would be to add

template logic that checks if the current logged-in user already has the proper

Chapter 14: Orders with Stripe 289

permission, in which case the button would not be visible. That can be done by adding

an if statement and checking if a user has special_status permission.

Code

<!-- templates/books/book_list.html -->

{% extends '_base.html' %}

{% block title %}Books{% endblock title %}

{% block content %}

{% if not perms.books.special_status %}

Purchase All Books

{% endif %}

{% for book in book_list %}

<div>

<h2>{{ book.title }}</h2>

</div>

{% endfor %}

{% endblock content %}

Tests

Typically the next step would be to add testing, but this example highlights an

important point: it’s hard to test integrations that involve 3rd party services. Doing

so goes well beyond the abilities of core Django. However, it can be done with various

mocking libraries and potentially using a service like Cypress244, but covering this is

well beyond the scope of the book.
244https://www.cypress.io

https://www.cypress.io/
https://www.cypress.io/

Chapter 14: Orders with Stripe 290

Git

There have been a lot of code changes in this chapter so make sure to commit

everything with Git.

Command Line

$ git status

$ git add .

$ git commit -m 'ch14'

And if you have any errors make sure to look at your logs with docker-compose logs

and compare your code with the official source code on Github245.

Conclusion

This chapter demonstrated how to add payments to a Django site. To review we used

Stripe Checkout and our publishable key to send a customer’s credit card information

to Stripe. The Stripe API then sent us back a unique token for the customer, which we

used alongside our secret key on the server to submit a charge. Alongside this charge

we also updated the given user’s permissions.

There are a number of additional steps that might be taken such as allowing payments

for an individual book, a bundle, and so on. The process is the same aswhatwe’ve done

here: create a permission or even a group potentially and then link the charge to that.
245https://github.com/wsvincent/djangoforprofessionals/tree/master/ch14-orders-with-stripe

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch14-orders-with-stripe
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch14-orders-with-stripe

Chapter 15: Search
Search is a fundamental feature of most websites and certainly anything e-commerce

related like our Bookstore. In this chapterwewill learn how to implement basic search

with forms and filters. Then we will improve it with additional logic and touch upon

ways to go even more deeply with search options in Django.

We only have three books in our database now but the code here will scale to as many

books as we’d like.

Search functionality consists of two parts: a form to pass along a user search query

and then a results page that performs a filter based on that query. Determining “the

right” type of filter is where search becomes interesting and hard. But first we need

to create both a form and the search results page.

We could start with either one at this point, but’ll we configure the filtering first and

then the form.

Search Results Page

We’ll start with the search results page. As with all Django pages that means adding

a dedicated URL, view, and template. The implementation order doesn’t particularly

matter, but we will add them in that order.

Within books/urls.py add a search/path thatwill take a viewcalled SearchResultsListView

and has a URL name of search_results.

Chapter 15: Search 292

Code

books/urls.py

from django.urls import path

from .views import BookListView, BookDetailView, SearchResultsListView # new

urlpatterns = [

path('', BookListView.as_view(), name='book_list'),

path('<uuid:pk>', BookDetailView.as_view(), name='book_detail'),

path('search/', SearchResultsListView.as_view(), name='search_results'), # new

]

Next up is the view SearchResultsListView which is, for now, a listing of all available

books. That’s a prime candidate for using ListView. Its template will be called search_-

results.html and live within the templates/books/ directory. The only new code is for

SearchResultsListView as we have previously imported both ListView and the Book

model at the top of the file.

Code

books/views.py

...

class SearchResultsListView(ListView): # new

model = Book

context_object_name = 'book_list'

template_name = 'books/search_results.html'

Last up is our template which must be created.

Chapter 15: Search 293

Command Line

$ touch templates/books/search_results.html

For now it will list all available book’s by title, author, and price.

Code

<!-- templates/books/search_results.html -->

{% extends '_base.html' %}

{% block title %}Search{% endblock title %}

{% block content %}

<h1>Search Results</h1>

{% for book in book_list %}

<div>

<h3>{{ book.title }}</h3>

<p>Author: {{ book.author }}</p>

<p>Price: $ {{ book.price }}</p>

</div>

{% endfor %}

{% endblock content %}

The search results page is now available at http://127.0.0.1:8000/books/search/246.
246http://127.0.0.1:8000/books/search/

http://127.0.0.1:8000/books/search/
http://127.0.0.1:8000/books/search/

Chapter 15: Search 294

Search page

And there it is!

Basic Filtering

In Django a QuerySet247 is used to filter the results from a database model. Currently

our search results page doesn’t feel like one because it is outputting all results from

the Bookmodel. Ultimately we want to run the filter based on the user’s search query,

but first we’ll work through multiple filtering options.

It turns out there aremultipleways to customize a queryset including via amanager248

on the model itself but to keep things simple, we can add a filter with just one line. So

let’s do that!

We can override the default queryset attribute on ListView which by default shows
247https://docs.djangoproject.com/en/2.2/topics/db/queries/#retrieving-objects
248https://docs.djangoproject.com/en/2.2/topics/db/managers/#django.db.models.Manager

https://docs.djangoproject.com/en/2.2/topics/db/queries/#retrieving-objects
https://docs.djangoproject.com/en/2.2/topics/db/managers/#django.db.models.Manager
https://docs.djangoproject.com/en/2.2/topics/db/queries/#retrieving-objects
https://docs.djangoproject.com/en/2.2/topics/db/managers/#django.db.models.Manager

Chapter 15: Search 295

all results. The queryset documentation is quite robust and detailed, but often using

contains249 (which is case sensitive) or icontains250 (which is not case sensitive) are

good starting points. We will implement the filter based on the title that “contains”

the name “beginners”.

Code

books/views.py

class SearchResultsListView(ListView):

model = Book

context_object_name = 'book_list'

template_name = 'books/search_results.html'

queryset = Book.objects.filter(title__icontains='beginners') # new

Refresh the search results page and now only a book with the title containing

“beginners” is displayed. Success!

Search page for “beginners”

For basic filteringmost of the time the built-in querysetmethods251 of filter(), all(),

get(), or exclude() will be enough. However there is also a very robust and detailed
249https://docs.djangoproject.com/en/2.2/ref/models/querysets/#contains
250https://docs.djangoproject.com/en/2.2/ref/models/querysets/#icontains
251https://docs.djangoproject.com/en/2.2/topics/db/queries/#other-queryset-methods

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#contains
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#icontains
https://docs.djangoproject.com/en/2.2/topics/db/queries/#other-queryset-methods
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#contains
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#icontains
https://docs.djangoproject.com/en/2.2/topics/db/queries/#other-queryset-methods

Chapter 15: Search 296

QuerySet API252 available as well that is worthy of further study.

Q Objects

Using filter() is powerful and it’s even possible to chain filters253 together such as

search for all titles that contain “beginners” and “django”. However often you’ll want

more complex lookups that can use “OR” not just “AND”; that’s when it is time to turn

to Q objects254.

Here’s an example where we set the filter to look for a result that matches a title of

either “beginners” or “api”. It’s as simple as importing Q at the top of the file and then

subtly tweaking our existing query. The | symbol represents the “or” operator. We can

filter on any available field: not just title but also author or price as desired.

As the number of filters grows it can be helpful to separate out the queryset override

via get_queryset(). That’s what we’ll do here but note that this choice is optional.

Code

books/views.py

from django.db.models import Q # new

...

class SearchResultsListView(ListView):

model = Book

context_object_name = 'book_list'

template_name = 'books/book_list.html'

def get_queryset(self): # new
252https://docs.djangoproject.com/en/2.2/ref/models/querysets/#queryset-api
253https://docs.djangoproject.com/en/2.2/topics/db/queries/#chaining-filters
254https://docs.djangoproject.com/en/2.2/topics/db/queries/#complex-lookups-with-q-objects

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#queryset-api
https://docs.djangoproject.com/en/2.2/topics/db/queries/#chaining-filters
https://docs.djangoproject.com/en/2.2/topics/db/queries/#complex-lookups-with-q-objects
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#queryset-api
https://docs.djangoproject.com/en/2.2/topics/db/queries/#chaining-filters
https://docs.djangoproject.com/en/2.2/topics/db/queries/#complex-lookups-with-q-objects

Chapter 15: Search 297

return Book.objects.filter(

Q(title__icontains='beginners') | Q(title__icontains='api')

)

Refresh the search results page to see the new result.

Search with Q objects

Now let’s turn our attention to the corresponding search form so that rather than

hardcode our filters in we can populate them based on the user’s search query.

Forms

Fundamentally a web form is simple: it takes user input and sends it to a URL via either

a GET or POST method. However in practice this fundamental behavior of the web can

be monstrously complex.

The first issue is sending the form data: where does the data actually go and how

do we handle it once there? Not to mention there are numerous security concerns

whenever we allow users to submit data to a website.

Chapter 15: Search 298

There are only two options for “how” a form is sent: either via GET or POST HTTP

methods.

A POST bundles up form data, encodes it for transmission, sends it to the server, and

then receives a response. Any request that changes the state of the database–creates,

edits, or deletes data–should use a POST.

A GET bundles form data into a string that is added to the destination URL. GET should

only be used for requests that do not affect the state of the application, such as a

search where nothing within the database is changing, basically we’re just doing a

filtered list view.

If you look at the URL after visiting Google.com you’ll see your search query in the

actual search results page URL itself.

For more information, Mozilla has detailed guides on both sending form data255 and

form data validation256 that are worth reviewing if you’re not already familiar with

form basics.

Search Form

Let’s add a basic search form to the current homepage right now. It can easily be

placed in the navbar or on a dedicated search page as desired in the future.

We start with HTML <form> tags and use Bootstrap’s styling to make them look nice.

The action specifies where to redirect the user after the form is submitted, which will

be the search_results page. As with all URL links this is the URL name for the page.

Then we indicate the desired method of get rather than post.

The second part of the form is the input which contains the user search query. We

provide it with a variable name, q, whichwill be later visible in theURL and also available
255https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
256https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation

https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Sending_and_retrieving_form_data
https://developer.mozilla.org/en-US/docs/Learn/HTML/Forms/Form_validation

Chapter 15: Search 299

in the views file. We add Bootstrap styling with the class, specify the type of input is

text, add a Placeholder which is default text that prompts the user. The last part,

aria-label, is the name provided to screen reader users. Accessibility is a big part

of web development and should always be considered from the beginning: include

aria-labels with all your forms!

Code

<!-- templates/home.html -->

{% extends '_base.html' %}

{% load static %}

{% block title %}Home{% endblock title %}

{% block content %}

<h1>Homepage</h1>

<form class="form-inline mt-2 mt-md-0" action="{% url 'search_results' %}"

method="get">

<input name="q" class="form-control mr-sm-2" type="text" placeholder="Search"

aria-label="Search">

</form>

{% endblock content %}

Navigate to the homepage and the new search box is present.

Chapter 15: Search 300

Homepage with search box

Try inputting a search, for example for “hello.” Upon hitting Return you are redirected

to the search results page. Note in particular the URL contains the search query

http://127.0.0.1:8000/books/search/?q=hello257.

URL with query string

However the results haven’t changed! And that’s because our SearchResultsListView

still has the hardcoded values from before. The last step is to take the user’s search

query, represented by q in the URL, and pass it in to the actual search filters.

257http://127.0.0.1:8000/books/search/?q=hello

http://127.0.0.1:8000/books/search/?q=hello
http://127.0.0.1:8000/books/search/?q=hello

Chapter 15: Search 301

Code

books/views.py

class SearchResultsListView(ListView):

model = Book

context_object_name = 'book_list'

template_name = 'books/search_results.html'

def get_queryset(self): # new

query = self.request.GET.get('q')

return Book.objects.filter(

Q(title__icontains=query) | Q(author__icontains=query)

)

What changed? We added a query variable that takes the value of q from the form

submission. Then updated our filter to use query on either a title or an author field.

That’s it! Refresh the search results page–it still has the same URLwith our query–and

the result is expected: no results on either title or author for “hello”.

Go back to the homepage and try a new search such as for “django” or “beginners” or

“william” to see the complete search functionality in action.

Git

Make sure to save our current work in this chapter by committing the new code to

Git.

Chapter 15: Search 302

Command Line

$ git status

$ git add .

$ git commit -m 'ch15'

The official source code for this chapter is available on Github258.

Conclusion

Our basic search is now complete, but we’ve only scratched the surface of potential

search optimizations. For example, maybe wewant a button added to the search form

that could be clicked in addition to hitting the Return key? Or better yet include form

validation. Beyond filtering with ANDs and ORs there are other factors if we want a

Google-quality search, things like relevancy and much more.

A next-step would be to use a third-party package like django-watson259 or django-

haystack260 to add more advanced search.

Or given that we’re using PostgreSQL as the database take advantage of its full text

search261.

A final option is either use an enterprise-level solution like ElasticSearch262 that must

be running on a separate server (not the hardest thing with Docker), or rely on a

hosted solution like Swiftype263 or Algolia264.

In the next chapter we’ll explore the many performance optimizations available in

Django as we prepare our Bookstore project for eventual deployment.
258https://github.com/wsvincent/djangoforprofessionals/tree/master/ch15-search
259https://github.com/etianen/django-watson
260https://github.com/django-haystack/django-haystack
261https://docs.djangoproject.com/en/2.2/ref/contrib/postgres/search/
262https://www.elastic.co/
263https://swiftype.com/
264https://www.algolia.com/

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch15-search
https://github.com/etianen/django-watson
https://github.com/django-haystack/django-haystack
https://github.com/django-haystack/django-haystack
https://docs.djangoproject.com/en/2.2/ref/contrib/postgres/search/
https://docs.djangoproject.com/en/2.2/ref/contrib/postgres/search/
https://www.elastic.co/
https://swiftype.com/
https://www.algolia.com/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch15-search
https://github.com/etianen/django-watson
https://github.com/django-haystack/django-haystack
https://docs.djangoproject.com/en/2.2/ref/contrib/postgres/search/
https://www.elastic.co/
https://swiftype.com/
https://www.algolia.com/

Chapter 16: Performance
The first priority for any website is that it must work properly and contain proper

tests. But if your project is fortunate enough to receive a large amount of traffic the

focus quickly shifts to performance and making things as efficient as possible. This is

a fun and challenging exercise for many engineers, but it can also be a trap.

The computer scientist Donald Knuth has a famous quote265 worth reading in its

entirety:

“The real problem is that programmers have spent far too much time worrying about

efficiency in the wrong places and at the wrong times; premature optimization is the

root of all evil (or at least most of it) in programming.”

While it’s important to set up propermonitoring so you can optimize your project later

on, don’t focus too much on it upfront. There’s no way to properly mimic production

environments locally. And there is no way to predict exactly how a site’s traffic will

look. But it is possible to spend far too much time seeking out tiny performance gains

in the early stages instead of talking to users and making larger code improvements!

In this chapter we’ll focus on the broad strokes of Django-related performance and

highlight areas worth further investigation at scale. Generally speaking performance

comes down to four major areas: optimizing database queries, caching, indexes, and

compressing front-end assets like images, JavaScript, and CSS.
265http://www.paulgraham.com/knuth.html

http://www.paulgraham.com/knuth.html
http://www.paulgraham.com/knuth.html

Chapter 16: Performance 304

django-debug-toolbar

Before we can optimize our database queries we need to see them. And for this

the default tool in the Django community is the third-party package django-debug-

toolbar266. It comes with a configurable set of panels to inspect the complete re-

quest/response cycle of any given page.

Per usual we can install it within Docker and stop our running containers.

Command Line

$ docker-compose exec web pipenv install django-debug-toolbar==2.0

$ docker-compose down

There are three separate configurations to set in our bookstore_project/settings.py

file:

1. INSTALLED_APPS

2. Middleware

3. INTERNAL_IPS

First add Debug Toolbar to the INSTALLED_APPS configuration. Note that the proper

name is debug_toolbar not django_debug_toolbar as might be expected.

266https://github.com/jazzband/django-debug-toolbar

https://github.com/jazzband/django-debug-toolbar
https://github.com/jazzband/django-debug-toolbar
https://github.com/jazzband/django-debug-toolbar

Chapter 16: Performance 305

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'django.contrib.staticfiles',

'django.contrib.sites',

Third-party

'crispy_forms',

'allauth',

'allauth.account',

'debug_toolbar', # new

Local

'users.apps.UsersConfig',

'pages.apps.PagesConfig',

'books.apps.BooksConfig',

'orders.apps.OrdersConfig',

]

Second, add Debug Toolbar to the Middleware where it is primarily implemented.

Chapter 16: Performance 306

Code

bookstore_project/settings.py

MIDDLEWARE = [

'django.middleware.security.SecurityMiddleware',

'django.contrib.sessions.middleware.SessionMiddleware',

'django.middleware.common.CommonMiddleware',

'django.middleware.csrf.CsrfViewMiddleware',

'django.contrib.auth.middleware.AuthenticationMiddleware',

'django.contrib.messages.middleware.MessageMiddleware',

'django.middleware.clickjacking.XFrameOptionsMiddleware',

'debug_toolbar.middleware.DebugToolbarMiddleware', # new

]

And third, set the INTERNAL_IPS267 as well. If we were not in Docker this could be

set to '127.0.0.1', however, since we’re running our web server within Docker an

additional step is required so that it matches the machine address of Docker. Add the

following lines at the bottom of bookstore_project/settings.py.

Code

bookstore_project/settings.py

...

django-debug-toolbar

import socket

hostname, _, ips = socket.gethostbyname_ex(socket.gethostname())

INTERNAL_IPS = [ip[:-1] + "1" for ip in ips]

Phew. That looks a bit scary, but basically it ensures that our INTERNAL_IPS matches

that of our Docker host.
267https://docs.djangoproject.com/en/2.2/ref/settings/#internal-ips

https://docs.djangoproject.com/en/2.2/ref/settings/#internal-ips
https://docs.djangoproject.com/en/2.2/ref/settings/#internal-ips

Chapter 16: Performance 307

Now rebuild the base image so it contains the package and the updated settings

configuration.

Command Line

$ docker-compose up -d --build

There’s one last step and that is to update our URLconf. We only want Debug Toolbar

to appear if DEBUG is true so we’ll add logic to display it only in this case.

Code

bookstore_project/urls.py

...

if settings.DEBUG:

import debug_toolbar

urlpatterns = [

path('__debug__/', include(debug_toolbar.urls)),

] + urlpatterns

Now if you refresh the homepage you’ll see the django-debug-toolbar on the righthand

side.

Chapter 16: Performance 308

Debug Toolbar

If you click the “Hide” link on top it becomes a much smaller sidebar on the righthand

side of the page.

Analyzing Pages

DebugToolbar hasmany possible customizations268 but the default settings visible tell

us a lot about our homepage. For instance, we can see the current version of Django

being used as well as the Time it took to load the page. Also the specific request called
268https://django-debug-toolbar.readthedocs.io/en/latest/index.html

https://django-debug-toolbar.readthedocs.io/en/latest/index.html
https://django-debug-toolbar.readthedocs.io/en/latest/index.html

Chapter 16: Performance 309

which was HomePageView. This may seem obvious but on large codebases especially if

you are jumping in as a new developer, it may not be obvious which view is calling

which page. Debug Toolbar is a helpful quickstart to understanding existing sites.

Probably the most useful item, however, is SQLwhich shows two queries are being run

and the time for them. If you click on it even more data appears.

Debug Toolbar

Large and poorly optimized sites can have hundreds or even thousands of queries

being run on a single page!

Chapter 16: Performance 310

select_related and prefetch_related

What are the options if you do find yourself working on a Django site with way too

many SQL queries per page? In general, though, fewer large queries will be faster than

many smaller queries, though it’s possible and required to test this in practice. Two

common techniques for doing so are select_related()269 and prefetch_related()270.

select_related is used for single-value relationships through a forward one-to-many

or a one-to-one relationship. It creates a SQL join and includes the fields of the related

object in the SELECT statement, which results in all related objects being included in a

single more complex database query. This single query is typically more performant

than multiple, smaller queries.

prefetch_related is used for a set or list of objects like a many-to-many or many-to-

one relationship. Under the hood a lookup is done for each relationship and the “join”

occurs in Python, not SQL. This allows it to prefetchmany-to-many andmany-to-one

objects, which cannot be done using select_related, in addition to the foreign key and

one-to-one relationships that are supported by select_related.

Implementing one or both on a website is a common first pass towards reducing

queries and loading time for a given page.

Caching

Consider that our Bookstore project is a dynamic website. Each time a user requests a

page our server has tomake various calculations including database queries, template

rendering, and so on before servicing it. This takes time and is much slower than

simply reading a file from a static site where the content does not change.
269https://docs.djangoproject.com/en/2.2/ref/models/querysets/#select-related
270https://docs.djangoproject.com/en/2.2/ref/models/querysets/#prefetch-related

https://docs.djangoproject.com/en/2.2/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#prefetch-related
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#select-related
https://docs.djangoproject.com/en/2.2/ref/models/querysets/#prefetch-related

Chapter 16: Performance 311

On large sites, though, this type of overhead can be quite slow and caching is one

of the first solutions in a web developer’s tool bag. Implementing caching on our

current project is definitely overkill, but we will nonetheless review the options and

implement a basic version.

A cache is an in-memory storing of an expensive calculation. Once executed it doesn’t

need to be run again! The twomost popular options areMemcached271 which features

native Django support and Redis272 which is commonly implementedwith the django-

redis273 third-party package.

Django has its own cache framework274 which includes four different caching options

in descending order of granularity:

1) The per-site cache275 is the simplest to set up and caches your entire site.

2) The per-view cache276 lets you cache individual views.

3) Template fragment caching277 lets you specify a specific section of a template to

cache.

4) The low-level cache API278 lets you manually set, retrieve, and maintain specific

objects in the cache.

Why not just cache everything all the time? One reason is that cache memory is

expensive, as it’s stored as RAM: think about the cost of going from 8GB to 16GB of

RAMon your laptop vs. 256GB to 512GB of hard drive space. Another is the cachemust

be “warm,” that is filled with updated content, so depending upon the needs of a site,

optimizing the cache so it is accurate, but not wasteful, takes quite a bit of tuning.
271https://docs.djangoproject.com/en/2.2/topics/cache/#memcached
272https://redis.io/
273https://github.com/niwinz/django-redis
274https://docs.djangoproject.com/en/2.2/topics/cache/
275https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-site-cache
276https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-view-cache
277https://docs.djangoproject.com/en/2.2/topics/cache/#template-fragment-caching
278https://docs.djangoproject.com/en/2.2/topics/cache/#the-low-level-cache-api

https://docs.djangoproject.com/en/2.2/topics/cache/#memcached
https://redis.io/
https://github.com/niwinz/django-redis
https://github.com/niwinz/django-redis
https://docs.djangoproject.com/en/2.2/topics/cache/
https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-site-cache
https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-view-cache
https://docs.djangoproject.com/en/2.2/topics/cache/#template-fragment-caching
https://docs.djangoproject.com/en/2.2/topics/cache/#the-low-level-cache-api
https://docs.djangoproject.com/en/2.2/topics/cache/#memcached
https://redis.io/
https://github.com/niwinz/django-redis
https://docs.djangoproject.com/en/2.2/topics/cache/
https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-site-cache
https://docs.djangoproject.com/en/2.2/topics/cache/#the-per-view-cache
https://docs.djangoproject.com/en/2.2/topics/cache/#template-fragment-caching
https://docs.djangoproject.com/en/2.2/topics/cache/#the-low-level-cache-api

Chapter 16: Performance 312

If you wanted to implement per-site caching, which is the simplest approach, you’d

add UpdateCacheMiddleware at the very top of the MIDDLEWARE configuration in bookstore_-

project/settings.py and FetchFromCacheMiddleware at the very bottom. Also set three

additional fields CACHE_MIDDLEWARE_ALIAS279, CACHE_MIDDLEWARE_SECONDS280,

and CACHE_MIDDLEWARE_KEY_PREFIX281.

Code

bookstore_project/settings.py

MIDDLEWARE = [

'django.middleware.cache.UpdateCacheMiddleware', # new

'django.middleware.security.SecurityMiddleware',

'django.contrib.sessions.middleware.SessionMiddleware',

'django.middleware.common.CommonMiddleware',

'debug_toolbar.middleware.DebugToolbarMiddleware',

'django.middleware.csrf.CsrfViewMiddleware',

'django.contrib.auth.middleware.AuthenticationMiddleware',

'django.contrib.messages.middleware.MessageMiddleware',

'django.middleware.clickjacking.XFrameOptionsMiddleware',

'debug_toolbar.middleware.DebugToolbarMiddleware',

'django.middleware.cache.FetchFromCacheMiddleware', # new

]

CACHE_MIDDLEWARE_ALIAS = 'default'

CACHE_MIDDLEWARE_SECONDS = 604800

CACHE_MIDDLEWARE_KEY_PREFIX = ''

The only default you might want to adjust is CACHE_MIDDLEWARE_SECONDS which is the

default number of seconds (600) to cache a page. After the period is up, the cache
279https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CACHE_MIDDLEWARE_ALIAS
280https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-seconds
281https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-key-prefix

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CACHE_MIDDLEWARE_ALIAS
https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-seconds
https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-key-prefix
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CACHE_MIDDLEWARE_ALIAS
https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-seconds
https://docs.djangoproject.com/en/2.2/ref/settings/#cache-middleware-key-prefix

Chapter 16: Performance 313

expires and becomes empty. A good default when starting out is 604800 seconds or

1 week (60secs x 60minutes x 168hours) for a site with content that doesn’t change

very often. But if you find your cache filling up rapidly or you are running a site where

the content changes on a frequent basis, shortening this setting is a good first step.

Implementing caching is strictly optional at this point though. Once a website is up

and running the need for caching–per site, per page, and so on–will quickly become

apparent. There is also extra complexity as Memcache must be run as a separate

instance. On the hosting service Heroku, whichwe’ll use in chapter 18 for deployment,

there is a free tier available via Memcachier282.

Indexes

Indexing283 is a common technique for speeding up database performance. It is a

separate data structure that allows faster searches and is typically only applied to

the primary key in a model. The downside is that indexes require additional space on

a disk so they must be used with care.

Tempting as it is to simply add indexes to primary keys from the beginning, it is better

to start without them and only add them later based on production needs. A general

rule of thumb is that if a given field is being used frequently, such as 10-25% of all

queries, it is a prime candidate to be indexed.

Historically an index field could be created by adding db_index=True to any model

field. For example, if we wanted to add one to the id field in our Book model it would

look as follows (don’t actually implement this though).

282https://elements.heroku.com/addons/memcachier
283https://en.wikipedia.org/wiki/Database_index

https://elements.heroku.com/addons/memcachier
https://en.wikipedia.org/wiki/Database_index
https://elements.heroku.com/addons/memcachier
https://en.wikipedia.org/wiki/Database_index

Chapter 16: Performance 314

Code

books/models.py

...

class Book(models.Model):

id = models.UUIDField(

primary_key=True,

db_index=True, # new

default=uuid.uuid4,

editable=False)

...

This change would need to be added via a migration file and migrated.

Starting in Django 1.11284 class-based model indexes were added so can include in the

Meta section instead285. So you could write the previous index as follows:

Code

books/models.py

...

class Book(models.Model):

id = models.UUIDField(

primary_key=True,

default=uuid.uuid4,

editable=False)

...

class Meta:

indexes = [# new
284https://docs.djangoproject.com/en/2.2/releases/1.11/#class-based-model-indexes
285https://docs.djangoproject.com/en/2.2/ref/models/options/#indexes

https://docs.djangoproject.com/en/2.2/releases/1.11/#class-based-model-indexes
https://docs.djangoproject.com/en/2.2/ref/models/options/#indexes
https://docs.djangoproject.com/en/2.2/releases/1.11/#class-based-model-indexes
https://docs.djangoproject.com/en/2.2/ref/models/options/#indexes

Chapter 16: Performance 315

models.Index(fields=['id'], name='id_index'),

]

permissions = [

("special_status", "Can read all books"),

]

Since we’ve changed the model we must create a migrations file and apply it.

Command Line

$ docker-compose exec web python manage.py makemigrations books

$ docker-compose exec web python manage.py migrate

django-extensions

Another very popular third-party package for inspecting a Django project is django-

extensions286 which adds a number of helpful custom extensions287.

One that is particularly helpful is shell_plus288 which will autoload all models into the

shell which makes working with the Django ORM much easier.

Front-end Assets

A final major source of bottlenecks in a website is loading front-end assets. CSS and

JavaScript can become quite large and therefore tools like django-compressor289 can

help to minimize their size.
286https://github.com/django-extensions/django-extensions
287https://django-extensions.readthedocs.io/en/latest/command_extensions.html
288https://django-extensions.readthedocs.io/en/latest/shell_plus.html
289https://github.com/django-compressor/django-compressor

https://github.com/django-extensions/django-extensions
https://github.com/django-extensions/django-extensions
https://django-extensions.readthedocs.io/en/latest/command_extensions.html
https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://github.com/django-compressor/django-compressor
https://github.com/django-extensions/django-extensions
https://django-extensions.readthedocs.io/en/latest/command_extensions.html
https://django-extensions.readthedocs.io/en/latest/shell_plus.html
https://github.com/django-compressor/django-compressor

Chapter 16: Performance 316

Images are often the first place to look in terms of asset size. The static/media file set

up we have in place will scale to a quite large size, but for truly large sites it is worth

investigating the use of a Content Delivery Network (CDN)290 for images instead of

storing them on the server filesystem.

You can also serve different size images to users. For example, rather than shrink

down a large book cover for a list or search page you could store a smaller thumbnail

version instead and serve that where needed. The third-party easy-thumbnails291

package is a good place to start for this.

A fantastic free e-book on the topic is Essential Image Optimization292 by Addy

Osmani that goes into depth on image optimization and automations.

As a final check there are automated tests for front-end speed such as Google’s

PageSpeed Insights293 that will assign a score based on how quickly a page loads.

Git

There’s been a lot of code changes in this chapter so make sure to commit everything

with Git.

Command Line

$ git status

$ git add .

$ git commit -m 'ch16'

If you have any errors make sure to look at your logs with docker-compose logs and

compare your code with the official source code on Github294.
290https://en.wikipedia.org/wiki/Content_delivery_network
291https://github.com/SmileyChris/easy-thumbnails
292https://images.guide/
293https://developers.google.com/speed/pagespeed/insights/
294https://github.com/wsvincent/djangoforprofessionals/tree/master/ch16-performance

https://en.wikipedia.org/wiki/Content_delivery_network
https://github.com/SmileyChris/easy-thumbnails
https://images.guide/
https://developers.google.com/speed/pagespeed/insights/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch16-performance
https://en.wikipedia.org/wiki/Content_delivery_network
https://github.com/SmileyChris/easy-thumbnails
https://images.guide/
https://developers.google.com/speed/pagespeed/insights/
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch16-performance

Chapter 16: Performance 317

Conclusion

There is an almost endless list of performance optimizations that can be applied to

a project. But take care to recall Donald Knuth’s sage advice and not go too crazy on

this. Bottlenecks will reveal themselves in production and should largely be addressed

then; not in advance.

You should remember that performance problems are a good problem to have! They

are fixable and mean that your project is being heavily used.

Chapter 17: Security
The World Wide Web is a dangerous place. There are many bad actors and even

more automated bots that will try to hack into your website and cause ill. Therefore

understanding and implementing security features is a must in any website.

Fortunately Django has a very strong record when it comes to security thanks to

its years of experience handling web security issues as well as a robust and regular

security update cycle. New feature releases295 come out roughly every 9months such

as 2.2 to 3.0 but there are also patch releases around bugs and security like 2.2.2 to

2.2.3 that occur almost monthly.

However as with any tool it’s important to implement security features correctly and

in this chapter we’ll cover how to do so in our bookstore project.

Social Engineering

The biggest security risk to any website is ultimately not technical: it is people. The

term social engineering296 refers to the technique of finding individuals with access

to a system who will willingly or unwillingly share their their login credentials with a

bad actor.

These days phishing297 is probably the most likely culprit if you are in a technical

organization. All it takes is one bad click on an email link for a malicious actor to

potentially gain access to the system, or at least all the access the compromised

employee has.
295https://www.djangoproject.com/download/
296https://en.wikipedia.org/wiki/Social_engineering_%28security%29
297https://en.wikipedia.org/wiki/Phishing

https://www.djangoproject.com/download/
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Phishing
https://www.djangoproject.com/download/
https://en.wikipedia.org/wiki/Social_engineering_(security)
https://en.wikipedia.org/wiki/Phishing

Chapter 17: Security 319

To mitigate this risk, implement a robust permissions scheme and only provide the

exact security access an employee needs, not more. Does every engineer need access

to the production database? Probably not. Do non-engineers need write access?

Again, probably not.These are discussions best had up front and a good default is to

only add permissions as needed, not to default to superuser status for everyone!

Django updates

Keeping your project up-to-date with the latest version of Django is another impor-

tant way to stay secure. And I don’t just mean being current with the latest feature

release298 (2.2, 3.0, 3.1, etc) which comes out roughly every 9 months. There are also

monthly security patch updates that take the form of 2.2.1, 2.2.2, 2.2.3, etc.

What about long-term support (LTS) releases? Certain feature releases designated

as LTS receive security and data loss fixes for a guaranteed period of time, usually

around 3 years. For example, Django 2.2 is an LTS and will be supported into 2022

when Django 4.0 is released as the next LTS version. Can you stay on LTS versions?

Yes. Should you? No. It is better and more secure to stay up-to-date.

Resist the temptation and reality of many real-world projects which is not to devote

a portion of developer time to staying current with Django versions. A website is like

a car: it needs regular maintenance to run at its best. You are only compounding the

problem if you put off updates.

How to update? Django features deprecation warnings299 that can and should be run

for each new release by typing python -Wa manage.py test. It is far better to update

from 2.0 to 2.1 to 2.2 and run the deprecation warnings each time rather than skipping

multiple versions.
298https://www.djangoproject.com/download/
299https://docs.djangoproject.com/en/2.2/howto/upgrade-version/

https://www.djangoproject.com/download/
https://www.djangoproject.com/download/
https://docs.djangoproject.com/en/2.2/howto/upgrade-version/
https://www.djangoproject.com/download/
https://docs.djangoproject.com/en/2.2/howto/upgrade-version/

Chapter 17: Security 320

Deployment Checklist

To assist with with deployment and checking security settings, the Django docs

contain a dedicated deployment checklist300 that further describes security settings.

Even better there is a command we can run to automate Django’s recommendations,

python manage.py check --deploy, that will check if a project is deployment ready. It

uses the Django system check framework301 which can be used to customize similar

commands in mature projects.

Since we are working in Docker we must prepend docker-compose exec web to the

command though.

Command Line

$ docker-compose exec web python manage.py check --deploy

System check identified some issues:

WARNINGS:

...

System check identified 9 issues (0 silenced).

How nice! A descriptive and lengthy list of issues which we can go through one-by-

one to prepare our Bookstore project.

Local vs. Production

Ultimately our local development settings will differ from those used in production.

There are a number of techniques to manage this complexity including the use of
300https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
301https://docs.djangoproject.com/en/2.2/topics/checks/

https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/topics/checks/
https://docs.djangoproject.com/en/2.2/howto/deployment/checklist/
https://docs.djangoproject.com/en/2.2/topics/checks/

Chapter 17: Security 321

multiple settings.py files, however, a cleaner approach is to take advantage of our

existing use of Docker and environment variables.

Let’s start by adding an ENVIRONMENT setting into bookstore_project/settings.py near

the top of the file, right below BASE_DIR. Set the default to production since it’s always

good to default to production settings, otherwise you risk deploying a project that

has security vulnerabilities.

Code

bookstore_project/settings.py

ENVIRONMENT = os.environ.get('ENVIRONMENT', default='development')

Within the existing docker-compose.yml file add an ENVIRONMENT variable for development.

docker-compose.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

environment:

- ENVIRONMENT=development

...

Nowhere’swhere themagic happens.We’ll create a dedicated docker-compose-prod.yml

file just for production settings.

Chapter 17: Security 322

Command Line

$ touch docker-compose-prod.yml

Copy and paste the existing docker-compose.yml file into the docker-compose-prod.yml

file and remove any volumes. The volumes serve to persist information locally within

the Docker containers but are not needed in production.

Then change ENVIRONMENT from development to production.

docker-compose-prod.yml

version: '3.7'

services:

web:

build: .

command: python /code/manage.py runserver 0.0.0.0:8000

environment:

- ENVIRONMENT=production

- SECRET_KEY=p_o3vp1rg5)t^lxm9-43%0)s-=1qpeq%o7gfq+e4#*!t+_ev82

- DEBUG=1

- STRIPE_TEST_PUBLISHABLE_KEY=<pk_test_your_publishable_key_here>

- STRIPE_TEST_SECRET_KEY=<sk_test_your_secret_key_here>

ports:

- 8000:8000

depends_on:

- db

db:

image: postgres:11

Chapter 17: Security 323

Make sure SECRET_KEY, STRIPE_TEST_PUBLISHABLE_KEY, and STRIPE_TEST_SECRET_KEY con-

tain your own specific values, not the placeholders included here!

DEBUG

First up is the DEBUG302 setting, currently set to “True” with the number “1” in the

Compose file. Debug should never be on when deploying a site to production.

One of debug modes main features is detailed error pages that display a host of

metadata about the environment including most currently defined settings. This is

helpful for spotting errors but a recipe for potential hackers to compromise a website.

Debug mode also remembers every SQL query executed which helps with debugging,

but dramatically consumes memory on a production server.

Therefore we must switch DEBUG to “0”, or “False”, in docker-compose-prod.yml.

docker-compose-prod.yml

DEBUG=0

ALLOWED HOSTS

Next up is the ALLOWED_HOSTS303 configuration which controls the host/domain

names our Django site can serve. It likely exists right below DEBUG in the bookstore_-

project/settings.py file. By default in development it is set to [], an empty list. But

for production, when DEBUG is False, it must be set explicitly and include values.

The two ways we access it locally which are via either 127.0.0.1 or localhost. We will

be using Heroku for deployments in the next section and all of its hosted sites are at

the subdomain of '.herokuapp.com', so we can add that now.
302https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG
303https://docs.djangoproject.com/en/2.2/ref/settings/#allowed-hosts

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/2.2/ref/settings/#allowed-hosts
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-DEBUG
https://docs.djangoproject.com/en/2.2/ref/settings/#allowed-hosts

Chapter 17: Security 324

Code

bookstore_project/settings.py

ALLOWED_HOSTS = ['.herokuapp.com', 'localhost', '127.0.0.1']

To confirm, spin down the Docker host now and restart it via the -f flag to specify an

alternate compose file304. By default Docker assumes a docker-compose.yml so adding

the -f flag is unnecessary in that case.

Command Line

$ docker-compose down

$ docker-compose -f docker-compose-prod.yml up -d --build

$ docker-compose exec web python manage.py migrate

The --build flag is added for the initial building of the image, along with all the

corresponding software packages, for the new compose file. Also migrate is run on

the new database. This is an entirely new instance of our project! As such it won’t

have a superuser account or any of our data such as book information. But that’s OK

for now; that information can be added in production and for now our focus to is pass

the deployment checklist!

Run the --deploy check again.

Command Line

$ docker-compose exec web python manage.py check --deploy

...

System check identified 7 issues (0 silenced).

There is still a long string of warnings but only 7 issues now, not 9 because DEBUG and

ALLOWED_HOSTS have been fixed. Success! Two down and many more to go.
304https://docs.docker.com/compose/reference/overview/

https://docs.docker.com/compose/reference/overview/
https://docs.docker.com/compose/reference/overview/

Chapter 17: Security 325

Web Security

Now it is time for a brief dive into web security. Django handles most common use

cases, however, it is still vital to understand frequent attack methods and the steps

Django takes to mitigate them. You can find an overview on the Django security

page305, but we’ll go into further depth here.

Django comes by default with a number of additional security middlewares306 that

guard against other request/response cycle attacks.

A full explanation of each is beyond the scope of this book, but it is worth reading

about the protections provided by the Django security team over the years. Do not

change the defaults without good cause.

SQL injection

Let’s start with a SQL injection attack307 which occurs when a malicious user can

execute arbitrary SQL code on a database. Consider a log in form on a site. What

happens if a malicious user instead types DELETE from users WHERE user_id=user_-

id? If this is run against the database without proper protections it could result in

the deletion of all user records! Not good. This XKCD comic308 provides a humorous

though potentially accurate example of how this can occur.

Fortunately the Django ORM automatically sanitizes user inputs by default when

constructing querysets to prevent this type of attack. Where you need to be careful is

that Django does provide the option to execute custom sql309 or raw queries310. These
305https://docs.djangoproject.com/en/2.2/topics/security/
306https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.security.SecurityMiddleware
307https://en.wikipedia.org/wiki/SQL_injection
308https://www.xkcd.com/327/
309https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-custom-sql
310https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-raw-queries

https://docs.djangoproject.com/en/2.2/topics/security/
https://docs.djangoproject.com/en/2.2/topics/security/
https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.security.SecurityMiddleware
https://en.wikipedia.org/wiki/SQL_injection
https://www.xkcd.com/327/
https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-custom-sql
https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-raw-queries
https://docs.djangoproject.com/en/2.2/topics/security/
https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.security.SecurityMiddleware
https://en.wikipedia.org/wiki/SQL_injection
https://www.xkcd.com/327/
https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-custom-sql
https://docs.djangoproject.com/en/2.2/topics/db/sql/#executing-raw-queries

Chapter 17: Security 326

should both be used with extreme caution since they could open up a vulnerability to

SQL injection.

The non-profit Open Web Application Security Project (OWASP) has a fantastic and

very detailed SQL Injection Cheat Sheet311 that is recommended for further reading.

XSS (Cross Site Scripting)

Cross-site scripting (XSS)312 is another classic attack that occurs when an attacker is

able to inject small bits of code onto web pages viewed by other people. This code,

typically JavaScript, if stored in the database will then be retrieved and displayed to

other users.

For example, consider the form used for writing book reviews on our current site.

What if instead of typing, “This bookwas great” a user typed somethingwith JavaScript?

For example, <script>alert('hello');</script>. If this script were stored on the

database then every future user’s page would have a pop-up saying “hello”. While

this particular example is more annoying than dangerous, a site vulnerable to XSS

is very dangerous because a malicious user could insert any JavaScript into the page,

including JavaScript that steals pretty much anything from an unsuspecting user.

To prevent an XSS attack Django templates automatically escape313 specific charac-

ters that are potentially dangerous including brackets (< and >), single quotes ', double

quotes ", and the ampersand &. There are some edge cases where you might want to

turn autoescape off314 but this should be used with extreme caution.

One step we do want to take is to set SECURE_BROWSER_XSS_FILTER315 to True
311https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_

Sheet.md
312https://en.wikipedia.org/wiki/Cross-site_scripting
313https://docs.djangoproject.com/en/2.2/ref/templates/language/#automatic-html-escaping
314https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-autoescape
315https://docs.djangoproject.com/en/2.2/ref/settings/#secure-browser-xss-filter

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/2.2/ref/templates/language/#automatic-html-escaping
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-autoescape
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-browser-xss-filter
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Cross-site_scripting
https://docs.djangoproject.com/en/2.2/ref/templates/language/#automatic-html-escaping
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#std:templatetag-autoescape
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-browser-xss-filter

Chapter 17: Security 327

which will use the X-XSS-Protection Header316 to help guard against XSS attacks.

We can use the ENVIRONMENT setting now to add if/else logic at the bottom of our

bookstore_project/settings.py file. If we are in production, then make sure that

SECURE_BROWSER_XSS_FILTER is set to True.

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True # new

Spin down the container and start it up again to register the changes to our settings

file. Running the --deploy check again shows we’re now down to 6 issues!

Command Line

$ docker-compose down

$ docker-compose -f docker-compose-prod.yml up -d

$ docker-compose exec web python manage.py check --deploy

Even with Django’s protections in place always be careful when storing HTML in

a database that will then be displayed to users. OWASP’s XSS Cheat Sheet317 is

recommended for further reading.

Cross-Site Request Forgery (CSRF)

A Cross-Site Request Forgery (CSRF)318 is the third major type of attack but generally

lesser known than SQL Injection or XSS. Fundamentally it exploits that trust a site has
316https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
317https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_

Cheat_Sheet.md
318https://en.wikipedia.org/wiki/Cross-site_request_forgery

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 17: Security 328

in a user’s web browser.

When a user logs in to awebsite, let’s call it a bankingwebsite for illustration purposes,

the server sends back a session token for that user. This is included in the HTTP

Headers of all future requests and authenticates the user. But what happens if a

malicious actor somehow obtains access to this session token?

For example, consider a user who logs into their bank in one browser tab. Then in

another tab they open their email and click on an email link from a malicious actor.

This link looks legitimate, but in fact it is pointing to the user’s bank which they are

still logged into! So instead of leaving a blog comment on this fake site, behind the

scenes the user’s credentials are used to transfer money from their account to the

hacker’s account.

In practice there are multiple ways to obtain a user’s credentials via a CSRF attack,

not just links, but hidden forms, special image tags, and even AJAX requests.

Django provides CSRF protection319 by including a random secret key both as a

cookie via CSRF Middleware320 and in a form via the csrf_token321 template tag. A 3rd

party website will not have access to a user’s cookies and therefore any discrepancy

between the two keys causes an error.

As ever, Django does allow customization: you can disable the CSRF middleware and

use the csrf_protect()322 template tag on specific views. However, undertake this step

with extreme caution.

The OWASP CSRF Cheat Sheet323 provides a comprehensive look at the issue. Almost

all major websites have been victims of CSRF attacks at some point in time.

A good rule of thumb is whenever you have a form on your site, think about whether
319https://docs.djangoproject.com/en/2.2/ref/csrf/#how-it-works
320https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.csrf.CsrfViewMiddleware
321https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#csrf-token
322https://docs.djangoproject.com/en/2.2/ref/csrf/#django.views.decorators.csrf.csrf_protect
323https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_

Prevention_Cheat_Sheet.md

https://docs.djangoproject.com/en/2.2/ref/csrf/#how-it-works
https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.csrf.CsrfViewMiddleware
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#csrf-token
https://docs.djangoproject.com/en/2.2/ref/csrf/#django.views.decorators.csrf.csrf_protect
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://docs.djangoproject.com/en/2.2/ref/csrf/#how-it-works
https://docs.djangoproject.com/en/2.2/ref/middleware/#django.middleware.csrf.CsrfViewMiddleware
https://docs.djangoproject.com/en/2.2/ref/templates/builtins/#csrf-token
https://docs.djangoproject.com/en/2.2/ref/csrf/#django.views.decorators.csrf.csrf_protect
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md

Chapter 17: Security 329

you need to include the csrf_token tag in it. Most of the time you will!

Clickjacking Protection

Clickjacking324 is yet another attack when a malicious site tricks a user into clicking

on a hidden frame. An internal frame, known as an iframe, is commonly used to embed

one website within another. For example, if you wanted to include a Google Map or

YouTube video on your site you would include the iframe tag that puts that site within

your own. This is very convenient.

But it has a security risk which is that a frame can be hidden from a user. Consider

if a user is already logged into their Amazon account and then visits a malicious site

that purports to be a picture of kittens. The user clicks on said malicious site to see

more kittens, but in fact they click an iFrame of an Amazon item that is unknowingly

purchased. This is but one example of clickjacking.

To prevent against this Django comes with a default clickjacking middleware325 that

checks whether or not a resource can be loaded within a frame or iframe. You can

turn this protection off if desired or even set it at a per view level. As ever, do so with

a degree of caution and research326.

For production though we will set it to DENY rather than the default of SAMEORIGIN.

Note that strings must be placed around it so use 'DENY' rather than simply DENY.

324https://en.wikipedia.org/wiki/Clickjacking
325https://docs.djangoproject.com/en/2.2/ref/clickjacking/#clickjacking-prevention
326https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.

md

https://en.wikipedia.org/wiki/Clickjacking
https://docs.djangoproject.com/en/2.2/ref/clickjacking/#clickjacking-prevention
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://en.wikipedia.org/wiki/Clickjacking
https://docs.djangoproject.com/en/2.2/ref/clickjacking/#clickjacking-prevention
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Clickjacking_Defense_Cheat_Sheet.md

Chapter 17: Security 330

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True

X_FRAME_OPTIONS = 'DENY' # new

Spin down the server, rebuild it, and run the tests again.

Command Line

$ docker-compose down

$ docker-compose -f docker-compose-prod.yml up -d --build

$ docker-compose exec web python manage.py check --deploy

Now only 5 issues remaining!

HTTPS/SSL

All modern websites should use HTTPS327 which provides encrypted communication

between a client and server. HTTP (Hypertext Transfer Protocol)328 is the backbone

of the modern web, but it does not, by default, have encryption.

The “s” in HTTPS refers to its encrypted nature first due to SSL (Secure Sockets Layer)

and these days its successor TLS (Transport Layer Security)329.

With HTTPS enabled, which we will do in our deployment chapter, malicious actors

can’t sniff the incoming and outgoing traffic for data like authentication credentials

or API keys.
327https://en.wikipedia.org/wiki/HTTPS
328https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
329https://en.wikipedia.org/wiki/Transport_Layer_Security

https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 17: Security 331

In our settings.py file we can force all non-HTTPS traffic to be redirected to HTTPS.

Add the following line at the bottom of the file.

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True

X_FRAME_OPTIONS = 'DENY'

SECURE_SSL_REDIRECT = True # new

HTTP Strict Transport Security (HSTS)

HTTP Strict Transport Security (HSTS)330 is a security policy that lets our server

enforce that web browsers should only interact via HTTPS by adding a Strict-

Transport-Security header331.

It’s best to start with a small value of time for testing, such as 3600 seconds, one

hour, and then later extending it to one year (314,536,000 seconds). This is done in

the SECURE_HSTS_SECONDS332 config which is implicitly set to 0.

We don’t have any subdomains in our Bookstore project so it makes sense to force

any subdomains to also exclusively use SSL via the SECURE_HSTS_INCLUDE_SUB-

DOMAINS333 setting.

Also SECURE_HSTS_PRELOAD334 to True.
330https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
331https://docs.djangoproject.com/en/2.2/ref/middleware/#http-strict-transport-security
332https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_HSTS_SECONDS
333https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-include-subdomains
334https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-preload

https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://docs.djangoproject.com/en/2.2/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/2.2/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_HSTS_SECONDS
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-include-subdomains
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-include-subdomains
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-preload
https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
https://docs.djangoproject.com/en/2.2/ref/middleware/#http-strict-transport-security
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_HSTS_SECONDS
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-include-subdomains
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-hsts-preload

Chapter 17: Security 332

Finally also SECURE_CONTENT_TYPE_NOSNIFF335 which controls nosniff336 set to

True

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True

X_FRAME_OPTIONS = 'DENY'

SECURE_SSL_REDIRECT = True

SECURE_HSTS_SECONDS = 3600 # new

SECURE_HSTS_INCLUDE_SUBDOMAINS = True # new

SECURE_HSTS_PRELOAD = True # new

SECURE_CONTENT_TYPE_NOSNIFF = True # new

Secure Cookies

An HTTP Cookie337 is used to store information on a client’s computer such as

authentication credentials. This is necessary because the HTTP protocol is stateless

by design: there’s no way to tell if a user is authenticated other than including an

identifier in the HTTP Header!

Django uses sessions and cookies for this, as do most websites. But cookies can and

should be forced over HTTPS as well via the SESSION_COOKIE_SECURE338 config.

It defaults to False so we must set it to True in production. We can also do the same

for CSRF cookies using CSRF_COOKIE_SECURE339.
335https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_CONTENT_TYPE_NOSNIFF
336https://docs.djangoproject.com/en/2.2/ref/middleware/#x-content-type-options
337https://en.wikipedia.org/wiki/HTTP_cookie
338https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SESSION_COOKIE_SECURE
339https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CSRF_COOKIE_SECURE

https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_CONTENT_TYPE_NOSNIFF
https://docs.djangoproject.com/en/2.2/ref/middleware/#x-content-type-options
https://en.wikipedia.org/wiki/HTTP_cookie
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SESSION_COOKIE_SECURE
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CSRF_COOKIE_SECURE
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_CONTENT_TYPE_NOSNIFF
https://docs.djangoproject.com/en/2.2/ref/middleware/#x-content-type-options
https://en.wikipedia.org/wiki/HTTP_cookie
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SESSION_COOKIE_SECURE
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-CSRF_COOKIE_SECURE

Chapter 17: Security 333

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True

X_FRAME_OPTIONS = 'DENY'

SECURE_SSL_REDIRECT = True

SECURE_HSTS_SECONDS = 3600

SECURE_HSTS_INCLUDE_SUBDOMAINS = True

SECURE_HSTS_PRELOAD = True

SECURE_CONTENT_TYPE_NOSNIFF = True

SESSION_COOKIE_SECURE = True # new

CSRF_COOKIE_SECURE = True # new

Spin down and up the containers one last time and then run the --check to confirm

there are no more errors!

Command Line

$ docker-compose down

$ docker-compose -f docker-compose-prod.yml up -d --build

$ docker-compose exec web python manage.py check --deploy

System check identified no issues (0 silenced).

Admin Hardening

So far it may seem as though the advice is to rely on Django defaults, use HTTPS,

add csrf_token tags on forms, and set a permissions structure. All true. But one step

Django does not take on our behalf is hardening the Django admin.

Chapter 17: Security 334

Consider that every Django website sets the admin, by default, to the /admin URL.

This is a prime suspect for any hacker trying to access a Django site. Therefore an

easy step is to simply change the admin URL to literally anything else!

To do this, open up the bookstore_project/urls.py file. In this example it’s been set

to anything-but-admin/.

Code

bookstore_project/urls.py

from django.conf import settings

from django.conf.urls.static import static

from django.contrib import admin

from django.urls import path, include

urlpatterns = [

Django admin

path('anything-but-admin/', admin.site.urls), # new

User management

path('accounts/', include('allauth.urls')),

Local apps

path('', include('pages.urls')),

path('books/', include('books.urls')),

]

if settings.DEBUG:

urlpatterns += static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Chapter 17: Security 335

A fun 3rd party package django-admin-honeypot340 will generate a fake admin log in

screen and email site admins341 the IP address of anyone trying to attack your site at

/admin. These IP addresses can then be added to a blocked address list for the site.

It’s also possible via django-two-factor-auth342 to add two-factor authentication to

your admin for an even further layer of protection.

Git

This chapter has been particularly heavy on code changes so make sure to commit all

the updates with Git.

Command Line

$ git status

$ git add .

$ git commit -m 'ch17'

If you have any errors, check your logs with docker-compose logs and compare you

code with the official source code on Github343.

Conclusion

Security is a major concern for any website, especially one that handles payments

like our Bookstore. By using a docker-compose-prod.yml file we can accurately test,

within Docker, our production settings before deploying the site live. Django comes

withmany built-in security features andwith the addition of the deployment checklist

we can now deploy our site now with a high degree of confidence that it is secure.
340https://github.com/dmpayton/django-admin-honeypot
341https://docs.djangoproject.com/en/2.2/ref/settings/#admins
342https://github.com/Bouke/django-two-factor-auth
343https://github.com/wsvincent/djangoforprofessionals/tree/master/ch17-security

https://github.com/dmpayton/django-admin-honeypot
https://docs.djangoproject.com/en/2.2/ref/settings/#admins
https://github.com/Bouke/django-two-factor-auth
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch17-security
https://github.com/dmpayton/django-admin-honeypot
https://docs.djangoproject.com/en/2.2/ref/settings/#admins
https://github.com/Bouke/django-two-factor-auth
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch17-security

Chapter 17: Security 336

Ultimately security is constant battle and while the steps in this chapter cover most

areas of concern, keeping your website up-to-date with the latest Django version is

vital for continued safety.

Chapter 18: Deployment
So far we have beenworking entirely in a local development environment on our com-

puter. But now it is time to deploy our project so that it is accessible to the public. In

truth the topic of deployment is worth an entire book on its own. Compared to other

web frameworks Django is very hands-off and agnostic on the topic. There are no

one-click deploys for most hosting platforms and while this requires more developer

work it also allows, in typical Django fashion, for a high degree of customization.

In the previous chapterwe configured a completely separate docker-compose-prod.yml

file and updated bookstore_project/settings.py to be production-ready. In this

chapter we’ll review how to choose a hosting provider, add a production-ready web

server, and properly configure static/media files before deploying our Bookstore site!

PaaS vs IaaS

The first question is whether to use a Platform-as-a-Service (PaaS) or Infrastructure-

as-a-Service (IaaS). A PaaS is an opinionated hosting option that handles much of

the initial configuration and scaling needed for a website. Popular examples include

Heroku344, PythonAnywhere345, and Dokku346 amongmany others. While a PaaS costs

more money upfront than an IaaS it saves an incredible amount of developer time,

handles security updates automatically, and can be quickly scaled.

An IaaS by contrast provides total flexibility is typically cheaper, but it requires a high

degree of knowledge and effort to properly set up. Prominent IaaS options include
344https://www.heroku.com/
345https://www.pythonanywhere.com/details/django_hosting
346http://dokku.viewdocs.io/dokku/

https://www.heroku.com/
https://www.pythonanywhere.com/details/django_hosting
http://dokku.viewdocs.io/dokku/
https://www.heroku.com/
https://www.pythonanywhere.com/details/django_hosting
http://dokku.viewdocs.io/dokku/

Chapter 18: Deployment 338

DigitalOcean347, Linode348, Amazon EC2349, and Google Compute Engine350 among

many others.

So which one to use? Django developers tend to fall in one of two camps: either they

already have a deployment pipeline configured with their IaaS of choice or they use a

PaaS. Since the former is far more complex and varies widely in its configuration, we

will use a PaaS in this book, specifically Heroku.

The choice of Heroku is somewhat arbitrary, but it is a mature technology that comes

with a truly free tier sufficient for deploying our Bookstore project.

WhiteNoise

For local development Django relies on the staticfiles app351 to automatically gather

and serve static files from across the entire project. This is convenient, but quite

inefficient and likely insecure, too.

For production the collectstatic352 must be run to compile all static files into a

single directory specified by STATIC_ROOT353. They can then be served either on

the same server, a separate server, or a dedicated cloud service/CDN by updating

STATICFILES_STORAGE354.

While it is tempting to jump right to a dedicated CDNbeware premature optimization:

the default option of serving from your server’s filesystem scales to a quite large size.

If you decide to go this route the django-storages355 project is a popular approach.
347https://www.digitalocean.com/
348https://www.linode.com/
349https://aws.amazon.com/ec2/
350https://cloud.google.com/compute/
351https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#module-django.contrib.staticfiles
352https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic
353https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT
354https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATICFILES_STORAGE
355https://github.com/jschneier/django-storages

https://www.digitalocean.com/
https://www.linode.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#module-django.contrib.staticfiles
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATICFILES_STORAGE
https://github.com/jschneier/django-storages
https://www.digitalocean.com/
https://www.linode.com/
https://aws.amazon.com/ec2/
https://cloud.google.com/compute/
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#module-django.contrib.staticfiles
https://docs.djangoproject.com/en/2.2/ref/contrib/staticfiles/#collectstatic
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATIC_ROOT
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-STATICFILES_STORAGE
https://github.com/jschneier/django-storages

Chapter 18: Deployment 339

In our project we will rely on serving files from our server with the aid of the

WhiteNoise356 project which works extremely well on Heroku and is both faster and

more configurable than Django defaults.

The first step is to install whitenoise within Docker and stop the running containers.

Command Line

$ docker-compose exec web pipenv install whitenoise==4.1.4

$ docker-compose down

We won’t rebuild the image just yet because we also have to make changes to our

settings. Since we’re using Docker it’s possible to switch to WhiteNoise locally as

well as in production. While it’s possible to do this by passing in a --nostatic flag

to the runserver command, this becomes tiring in practice. A better approach is

to add whitenoise.runserver_nostatic before django.contrib.stataticfiles in the

INSTALLED_APPS config which will do the same thing. We’ll also add it to our MIDDLEWARE

right below SecurityMiddleware.

Code

bookstore_project/settings.py

INSTALLED_APPS = [

'django.contrib.admin',

'django.contrib.auth',

'django.contrib.contenttypes',

'django.contrib.sessions',

'django.contrib.messages',

'whitenoise.runserver_nostatic', # new

'django.contrib.staticfiles',

'django.contrib.sites',
356https://github.com/evansd/whitenoise

https://github.com/evansd/whitenoise
https://github.com/evansd/whitenoise

Chapter 18: Deployment 340

...

]

MIDDLEWARE = [

'django.middleware.cache.UpdateCacheMiddleware',

'django.middleware.security.SecurityMiddleware',

'whitenoise.middleware.WhiteNoiseMiddleware', # new

...

]

With all our changesmadewe can now start up our project again in local development

mode.

Command Line

$ docker-compose up -d --build

WhiteNoise has additional options to serve compressed content and far-future

cache headers on content that won’t change. But for now, go ahead and run the

collectstatic command one more time.

Command Line

$ docker-compose exec web python manage.py collectstatic

There will be a warning about overwriting existing files. That’s fine. Type “yes” and

then hit the “Return” key to continue.

Chapter 18: Deployment 341

Gunicorn

When we ran the startproject command way back in Chapter 3 a wsgi.py file was

created with a default WSGI (Web Server Gateway Interface)357 configuration. This is

a specification for how a web app (like our Bookstore project) communicates with a

web server.

For production it is common to swap this out for either Gunicorn358 or uWSGI359. Both

offer a performance boost, but Gunicorn is more focused and simpler to implement

so it will be our choice.

The first step is to install it within our project and stopping our containers.

Command Line

$ docker-compose exec web pipenv install gunicorn==19.9.0

$ docker-compose down

Because we are using Docker our local environment can mimic production quite

easily so we’ll update both docker-compose.yml and docker-compose-prod.yml to use

Gunicorn instead of the local server.

docker-compose.yml

command: python /code/manage.py runserver 0.0.0.0:8000

command: gunicorn bookstore_project.wsgi -b 0.0.0.0:8000 # new

357https://wsgi.readthedocs.io/en/latest/
358https://gunicorn.org/
359https://uwsgi-docs.readthedocs.io/en/latest/

https://wsgi.readthedocs.io/en/latest/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/
https://wsgi.readthedocs.io/en/latest/
https://gunicorn.org/
https://uwsgi-docs.readthedocs.io/en/latest/

Chapter 18: Deployment 342

docker-compose-prod.yml

command: python /code/manage.py runserver 0.0.0.0:8000

command: gunicorn bookstore_project.wsgi -b 0.0.0.0:8000 # new

Now start up the containers again building a new image with the Gunicorn package

and our updated environment variables.

Command Line

$ docker-compose up -d --build

dj-database-url

Wewill ultimately spin up a dedicated PostgreSQL databasewithin Heroku for our de-

ployment. The way database information is supplied to Heroku is via an environment

variable named DATABASE_URL. We can use the dj-database-url360 package to parse

the DATABASE_URL environment variable and automatically convert it to the proper

configuration format.

For the last time in this book, install the package within Docker and then stop the

containers.

Command Line

$ docker-compose exec web pipenv install dj-database-url==0.5.0

$ docker-compose down

Then add three lines to the bottom of the bookstore_project/settings.py file.

360https://github.com/kennethreitz/dj-database-url

https://github.com/kennethreitz/dj-database-url
https://github.com/kennethreitz/dj-database-url

Chapter 18: Deployment 343

Code

bookstore_project/settings.py

Heroku

import dj_database_url

db_from_env = dj_database_url.config(conn_max_age=500)

DATABASES['default'].update(db_from_env)

And then build our new image, start the containers, and load the updated settings

into our project.

Command Line

$ docker-compose up -d --build

We’re done with local changes and can now fully switch over to deploying with

Heroku.

Heroku

Head over to the Heroku361 website and sign up for a free account. After you confirm

your email Heroku will redirect you to the dashboard section of the site.
361https://www.heroku.com/

https://www.heroku.com/
https://www.heroku.com/

Chapter 18: Deployment 344

Heroku Dashboard

Next make sure to install Heroku’s Command Line Interface (CLI) so we can deploy

from the command line. There are detailed instructions here362.

The final step is to log in with your Heroku credentials via the command line by typing

heroku login. Use the email and password for Heroku you just set.

Command Line

$ heroku login

All set! If you have any issues you can type heroku help on the command line or visit

the Heroku site for additional information.

Deploying with Docker

Now we are presented with a choice: deploy the traditional way on Heroku or with

Docker containers. The latter is a new approach Heroku and other hosting providers
362https://devcenter.heroku.com/articles/getting-started-with-python#set-up

https://devcenter.heroku.com/articles/getting-started-with-python#set-up
https://devcenter.heroku.com/articles/getting-started-with-python#set-up

Chapter 18: Deployment 345

have only recently added. However, just as Docker has taken over local development,

it is starting to take over deployments as well. And once you’ve configured containers

for deployment it is far easy to switch between potential hosting providers rather

than if you configure their specific way. So we will deploy with Docker containers.

Even then we have, yet again, a choice to make as there are two different container

options available363: using a container registry to deploy pre-built images or adding a

heroku.yml file. We will use the latter approach as it will allow additional commands

and more closely mimics the traditional Heroku approach of adding a Procfile for

configuration.

heroku.yml

Traditional non-Docker Heroku relies on a custom Procfile for configuring a site for

deployment. For containers Heroku relies on a similar approach of a custom file but

called heroku.yml364 in the root directory. It is similar to docker-compose.yml which is

used for building local Docker containers.

Let’s create our heroku.yml file now.

Command Line

$ touch heroku.yml

There are four top-level sections365 available for configuration: setup, build, release,

and run.

The main function of setup is to specify which add-ons are needed. These are hosted

solutions Heroku provides, typically for a fee. The big one is our database which
363https://devcenter.heroku.com/categories/deploying-with-docker
364https://devcenter.heroku.com/articles/build-docker-images-heroku-yml
365https://devcenter.heroku.com/articles/build-docker-images-heroku-yml#heroku-yml-overview

https://devcenter.heroku.com/categories/deploying-with-docker
https://devcenter.heroku.com/categories/deploying-with-docker
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml#heroku-yml-overview
https://devcenter.heroku.com/categories/deploying-with-docker
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml
https://devcenter.heroku.com/articles/build-docker-images-heroku-yml#heroku-yml-overview

Chapter 18: Deployment 346

will rely on the free heroku-postgresql366 tier. Heroku takes care of provisioning it,

security updates, and we can easily upgrade the database size and uptime as needed.

The build section is how we specify the Dockerfile should be, well, built. This relies

on our current Dockerfile in the root directory.

The release phase is used to run tasks before each new release is deployed. For

example, we can make sure collectstatic is run on every deploy automatically.

Finally there is the run phase where we specify which processes actually run the

application. Notably, the use of Gunicorn as the web server.

heroku.yml

setup:

addons:

- plan: heroku-postgresql

build:

docker:

web: Dockerfile

release:

image: web

command:

- python manage.py collectstatic --noinput

run:

web: gunicorn bookstore_project.wsgi

Make sure to add the new deployment updates to Git and commit them. In the next

section we’ll push all our local code to Heroku itself.

366https://elements.heroku.com/addons/heroku-postgresql

https://elements.heroku.com/addons/heroku-postgresql
https://elements.heroku.com/addons/heroku-postgresql

Chapter 18: Deployment 347

Command Line

$ git status

$ git add .

$ git commit -m 'ch18'

Heroku Deployment

Now create a new app on Heroku for our Bookstore project. If you type heroku create

thenHerokuwill assign a randomname. Since names are global in Heroku, it’s unlikely

that common ones like “blog” or “webapp” will be available. The name can always be

changed later within Heroku to an available global namespace.

Command Line

$ heroku create

Creating app... done, � damp-dawn-44130

https://damp-dawn-44130.herokuapp.com/ |

https://git.heroku.com/damp-dawn-44130.git

In this case Heroku assigned my app the name damp-dawn-44130. If you refresh the

Heroku dashboard on the website you will now see the newly created app.

Heroku New App

Chapter 18: Deployment 348

Click on the new app, damp-dawn-44130 in my case, to open the “Overview” page.

Heroku Overview Page

Then click on the “Settings” option at the top as we want to set our production

environment variables within Heroku.

Chapter 18: Deployment 349

Heroku App Settings

Click on “Reveal Config Vars”. Then add environment variables for ENVIRONMENT to

“production,” the SECRET_KEY, and DEBUG equal to “0” from the docker-compose-prod.yml

file.

Chapter 18: Deployment 350

Heroku Config Vars

It’s also possible to add config variables from the command line to Heroku. Doing so

via the Dashboard is easier to see, which is why it is demonstrated either way. Both

approaches work.

Now set the stack367 to use our Docker containers, not Heroku’s default buildpack.

Include your app name here at the end of the command after heroku stack:set

container -a.

367https://devcenter.heroku.com/articles/stack

https://devcenter.heroku.com/articles/stack
https://devcenter.heroku.com/articles/stack

Chapter 18: Deployment 351

Command Line

$ heroku stack:set container -a damp-dawn-44130

Stack set. Next release on � damp-dawn-44130 will use container.

Run git push heroku master to create a new release on � damp-dawn-44130.

To confirm this change executed correctly, refresh the Heroku dashboard page and

note that under the “Info” section, for “Stack” it now features “container.” That’s what

we want.

Heroku Stack

Before pushing our code to Heroku specify the hosted PostgreSQL database we want.

In our case, the free hobby-dev tier works well; it can always be updated in the future.

Chapter 18: Deployment 352

Command Line

$ heroku addons:create heroku-postgresql:hobby-dev -a damp-dawn-44130

Creating heroku-postgresql:hobby-dev on � damp-dawn-44130... free

Database has been created and is available

! This database is empty. If upgrading, you can transfer

! data from another database with pg:copy

Created postgresql-opaque-38157 as DATABASE_URL

Use heroku addons:docs heroku-postgresql to view documentation

The dj-database-url setting we set previously will automatically find and use this

DATABASE_URL for us.

We’re ready! Create a Heroku remote368, which means a version of our code that will

live on a Heroku-hosted server. Make sure to include -a and the name of your app.

Then “push” the code to Heroku which will result in building our Docker image and

running the containers.

Command Line

$ heroku git:remote -a damp-dawn-44130

$ git push heroku master

The initial pushmight take awhile to complete. You can see active progress by clicking

on the “Activity” tab on the Heroku dashboard.

Our Bookstore project should now be available online. Remember that while the code

mirrors our own local code, the production site has its own database that has no

information in it. To run commands on it add heroku run to standard commands. For

example, we should migrate our initial database and then create a superuser account.

368https://devcenter.heroku.com/articles/git#creating-a-heroku-remote

https://devcenter.heroku.com/articles/git#creating-a-heroku-remote
https://devcenter.heroku.com/articles/git#creating-a-heroku-remote

Chapter 18: Deployment 353

Command Line

$ heroku run python manage.py migrate

$ heroku run python manage.py createsuperuser

There are two ways to open the newly-deployed application. From the command line

you can type heroku open -a and the name of your app. Or you can click on the “Open

app” button in the upper right corner of the Heroku dashboard.

Command Line

$ heroku open -a damp-dawn-44130

Heroku Redirects

But…ack! What’s this? A redirect error. Welcome to the joys of deployment where

issues like this will crop up all the time.

Chapter 18: Deployment 354

SECURE_PROXY_SSL_HEADER

Some sleuthing uncovers that the issue is related to our SECURE_SSL_REDIRECT369

setting. Heroku uses proxies and so we must find the proper header and update

SECURE_PROXY_SSL_HEADER370 accordingly.

Since we do trust Heroku we can add Django’s default suggestion. So update the

“production” section of bookstore_project/settings.py with the following line.

Code

bookstore_project/settings.py

production

if ENVIRONMENT == 'production':

SECURE_BROWSER_XSS_FILTER = True

X_FRAME_OPTIONS = 'DENY'

SECURE_SSL_REDIRECT = True

SECURE_HSTS_SECONDS = 3600

SECURE_HSTS_INCLUDE_SUBDOMAINS = True

SECURE_HSTS_PRELOAD = True

SECURE_CONTENT_TYPE_NOSNIFF = True

SESSION_COOKIE_SECURE = True

CSRF_COOKIE_SECURE = True

SECURE_PROXY_SSL_HEADER = ('HTTP_X_FORWARDED_PROTO', 'https') # new

While we’re at it, we can also update ALLOWED_HOSTS with the exact URL name of

our Heroku deployment. Mine is damp-dawn-44130.herokuapp.com/ so the updated

configuration looks as follows:

369https://docs.djangoproject.com/en/2.2/ref/settings/#secure-ssl-redirect
370https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER

https://docs.djangoproject.com/en/2.2/ref/settings/#secure-ssl-redirect
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER
https://docs.djangoproject.com/en/2.2/ref/settings/#secure-ssl-redirect
https://docs.djangoproject.com/en/2.2/ref/settings/#std:setting-SECURE_PROXY_SSL_HEADER

Chapter 18: Deployment 355

Code

bookstore_project/settings.py

ALLOWED_HOSTS = ['damp-dawn-44130.herokuapp.com', 'localhost', '127.0.0.1']

Use your own unique Heroku subdomain here!

Finally, commit these changes to Git and then push the updated code to Heroku.

Command Line

$ git status

$ git add .

$ git commit -m 'secure_proxy_ssl_header and allowed_hosts update'

$ git push heroku master

After the build has completed refresh the webpage for your site. There it is!

Heroku Live Site

Heroku Logs

It is inevitable that you will have errors in your deployment at some point. When you

do, run heroku logs --tail to see error and info logs and debug what’s going on.

Chapter 18: Deployment 356

Hopefully this deployment process was smooth. But in practice, even with an estab-

lished Platform-as-a-Service like Heroku, it is highly likely that issues will occur. If

you see an error page, type heroku logs --tail, which displays info and error logs, to

diagnose the issue.

Stripe Live Payments

Our orders page is still running with Stripe in test mode. How do we update this

to use live keys and make actual payments? First, make sure to fully activate your

account on the Stripe website by filling in additional personal and banking infor-

mation about yourself. Second, add the live publishable and secret keys to your

docker-compose-prod.yml file–docker-compose.yml is for local development only.

docker-compose-prod.yml

version: '3.7'

services:

web:

build: .

command: gunicorn bookstore_project.wsgi -b 0.0.0.0:8000

environment:

- ENVIRONMENT=production

- SECRET_KEY=p_o3vp1rg5)t^lxm9-43%0)s-=1qpeq%o7gfq+e4#*!t+_ev82

- DEBUG=0

- STRIPE_LIVE_PUBLISHABLE_KEY=<pk_live_your_publishable_key_here>

- STRIPE_LIVE_SECRET_KEY=<sk_live_your_secret_key_here>

ports:

- 8000:8000

depends_on:

Chapter 18: Deployment 357

- db

db:

image: postgres:11

And third, add these twonewenvironment variables to bookstore_project/settings.py

under the existing entries for Stripe test values.

Code

bookstore_project/settings.py

STRIPE_LIVE_PUBLISHABLE_KEY=os.environ.get('STRIPE_LIVE_PUBLISHABLE_KEY')

STRIPE_LIVE_SECRET_KEY=os.environ.get('STRIPE_LIVE_SECRET_KEY')

To confirm these production settingswork as expectedmake sure to stop any running

local Docker containers, then restart with docker-compose-prod.yml and try it out.

Command Line

$ docker-compose down

$ docker-compose -f docker-compose-prod.yml up -d --build

Be aware that this is a real payment! While it is going to your own banking account

Stripe will still deduct its standard 2.9% + 30 cents per transaction so test this

sparingly.

Heroku Add-ons

Heroku comes with a large list of add-on services371 that, for a fee, can be quickly

added to any site. For example, to enable caching with Memcache, Memcachier372 is

an option to consider.
371https://elements.heroku.com/addons/
372https://elements.heroku.com/addons/memcachier

https://elements.heroku.com/addons/
https://elements.heroku.com/addons/memcachier
https://elements.heroku.com/addons/
https://elements.heroku.com/addons/memcachier

Chapter 18: Deployment 358

Daily backups373 are an additional, but essential, feature of any production database.

And if you’re using a custom domain for your site, ensuring SSL is vital for anywebsite,

especially one handling payments. You will need to be on a paid tier on Heroku374 to

enable this functionality.

PonyCheckup

A popular way to test Django deployments is with Pony Checkup375 by Sasha Romijn,

a long-standing member of the Django Security team.
373https://devcenter.heroku.com/articles/heroku-postgres-backups#scheduling-backups
374https://devcenter.heroku.com/articles/understanding-ssl-on-heroku
375https://www.ponycheckup.com/

https://devcenter.heroku.com/articles/heroku-postgres-backups#scheduling-backups
https://devcenter.heroku.com/articles/understanding-ssl-on-heroku
https://www.ponycheckup.com/
https://devcenter.heroku.com/articles/heroku-postgres-backups#scheduling-backups
https://devcenter.heroku.com/articles/understanding-ssl-on-heroku
https://www.ponycheckup.com/

Chapter 18: Deployment 359

Pony Checkup

If you have any errors, please check the official source code on Github376.
376https://github.com/wsvincent/djangoforprofessionals/tree/master/ch18-deployment

https://github.com/wsvincent/djangoforprofessionals/tree/master/ch18-deployment
https://github.com/wsvincent/djangoforprofessionals/tree/master/ch18-deployment

Chapter 18: Deployment 360

Conclusion

Even with all the advantages of a modern Platform-as-a-Service like Heroku, de-

ployment remains a complicated and often frustrating task for many developers.

Personally, I want my web apps to “just work”. But many engineers come to enjoy the

challenges of working on performance, security, and scaling. After all, it is far easier to

measure improvements in this realm: did page load times decrease? Did site uptime

improve? Is security up-to-date? Working on these problems can often feel far more

rewarding than debating which new feature to add to the site itself.

Conclusion
Building a “professional” website is no small task evenwith all the help that a batteries-

included web framework like Django provides. Docker provides a major advantage in

standardizing both local and production environments regardless of local machine–

and especially in a team context. However Docker is a complicated beast on its own.

While we have used it judiciously in this book there is much more that it can do

depending on the needs of a project.

Django itself is friendly to small projects because its defaults emphasize rapid local

development but these settings must be systematically updated for production, from

upgrading the database to PostgreSQL, using a custom user model, environment

variables, configuring user registration flow, static assets, email…on and on it goes.

The good news is that the steps needed for a production-level approach are quite

similar. Hence the first half of this book is deliberately agnostic about the eventual

project that is built: you’ll find these steps are standard on almost any new Django

project. The second half focused on building a real Bookstore site with modern

best practices, added Reviews, image uploads, set permissions, configured payments

with Stripe, added search, reviewed performance and security measures, and finally

deployed on Heroku with containers.

For all the content covered in this bookwe’ve really only scratched the surface of what

Django can do. This is the nature of modern web development: constant iteration.

Django is a magnificent partner in building out a professional website because so

many of the considerations required have already been thought of and included. But

knowledge is needed to know how to turn these production switches on to take

full advantage of the customization Django allows. Ultimately that is the goal of this

Conclusion 362

book: to expose you, the reader, to the full spectrum of what Django and professional

websites require.

As you learnmore about web development and Django I’d urge caution when it comes

to premature optimization. It is always tempting to features and optimizations to your

project that you think you’ll need later. The short list includes adding a CDN for static

and media assets, judiciously analyzing database queries, adding indexes to models,

and so on.

The truth is that in any given web project there will always be more to do than

time allows. This book has covered the fundamentals that are worthy of upfront

time to get right. Additional steps around security, performance, and features will

present themselves to you in real-time. Try to resist the urge to add complexity until

absolutely necessary.

If you have feedback on this book or examples of what you’ve built as a result, I

read and respond to every email I receive at will@wsvincent.com377. I look forward

to hearing from you!

377mailto:will@wsvincent.com

mailto:will@wsvincent.com
mailto:will@wsvincent.com

	Table of Contents
	Introduction
	Prerequisites
	Book Structure
	Book Layout
	Text Editor
	Conclusion

	Chapter 1: Docker
	What is Docker?
	Containers vs. Virtual Environments
	Install Docker
	Docker Hello, World
	Django Hello, World
	Pages App
	Images, Containers, and the Docker Host
	Git
	Conclusion

	Chapter 2: PostgreSQL
	Starting
	Docker
	Detached Mode
	PostgreSQL
	Settings
	Psycopg
	New Database
	Git
	Conclusion

	Chapter 3: Bookstore Project
	Docker
	PostgreSQL
	Custom User Model
	Custom User Forms
	Custom User Admin
	Superuser
	Tests
	Unit Tests
	Git
	Conclusion

	Chapter 4: Pages App
	Templates
	URLs and Views
	Tests
	Testing Templates
	Testing HTML
	setUp Method
	Resolve
	Git
	Conclusion

	Chapter 5: User Registration
	Auth App
	Auth URLs and Views
	Homepage
	Django Source Code
	Log In
	Redirects
	Log Out
	Sign Up
	Tests
	setUpTestData()
	Git
	Conclusion

	Chapter 6: Static Assets
	staticfiles app
	STATIC_URL
	STATICFILES_DIRS
	STATIC_ROOT
	STATICFILES_FINDERS
	Static Directory
	Images
	JavaScript
	collectstatic
	Bootstrap
	About Page
	Django Crispy Forms
	Tests
	Git
	Conclusion

	Chapter 7: Advanced User Registration
	django-allauth
	AUTHENTICATION_BACKENDS
	EMAIL_BACKEND
	ACCOUNT_LOGOUT_REDIRECT
	URLs
	Templates
	Log In
	Log Out
	Sign Up
	Admin
	Email Only Login
	Tests
	Social
	Git
	Conclusion

	Chapter 8: Environment Variables
	.env files
	SECRET_KEY
	DEBUG
	Databases
	Git
	Conclusion

	Chapter 9: Email
	Custom Confirmation Emails
	Email Confirmation Page
	Password Reset and Password Change
	Email Service
	Git
	Conclusion

	Chapter 10: Books App
	Models
	Admin
	URLs
	Views
	Templates
	object_list
	Individual Book Page
	context_object_name
	get_absolute_url
	Primary Keys vs. IDs
	Slugs vs. UUIDs
	Navbar
	Tests
	Git
	Conclusion

	Chapter 11: Reviews App
	Foreign Keys
	Reviews model
	Admin
	Templates
	Tests
	Git
	Conclusion

	Chapter 12: File/Image Uploads
	Media Files
	Models
	Admin
	Template
	Next Steps
	Git
	Conclusion

	Chapter 13: Permissions
	Logged-In Users Only
	Permissions
	Custom Permissions
	User Permissions
	PermissionRequiredMixin
	Groups & UserPassesTestMixin
	Tests
	Git
	Conclusion

	Chapter 14: Orders with Stripe
	Payments Flow
	Orders app
	Stripe
	Publishable & Secret Keys
	Stripe Checkout
	Charges
	Stripe + Permissions
	Templates
	Tests
	Git
	Conclusion

	Chapter 15: Search
	Search Results Page
	Basic Filtering
	Q Objects
	Forms
	Search Form
	Git
	Conclusion

	Chapter 16: Performance
	django-debug-toolbar
	Analyzing Pages
	select_related and prefetch_related
	Caching
	Indexes
	django-extensions
	Front-end Assets
	Git
	Conclusion

	Chapter 17: Security
	Social Engineering
	Django updates
	Deployment Checklist
	Local vs. Production
	DEBUG
	ALLOWED HOSTS
	Web Security
	SQL injection
	XSS (Cross Site Scripting)
	Cross-Site Request Forgery (CSRF)
	Clickjacking Protection
	HTTPS/SSL
	HTTP Strict Transport Security (HSTS)
	Secure Cookies
	Admin Hardening
	Git
	Conclusion

	Chapter 18: Deployment
	PaaS vs IaaS
	WhiteNoise
	Gunicorn
	dj-database-url
	Heroku
	Deploying with Docker
	heroku.yml
	Heroku Deployment
	SECURE_PROXY_SSL_HEADER
	Heroku Logs
	Stripe Live Payments
	Heroku Add-ons
	PonyCheckup
	Conclusion

	Conclusion

